```
About the Survey
The Surveyon 'Consumer Awareness about Health and Drugs'was
``` conducted in 2017-2018. Eighty student volunteers, ten each from eight affiliated law colleges of the Tamil Nadu Dr.Ambedkar Law University were deployed to undertake the survey under the supervision of the Project Co-ordinators. A total of 3200 persons were interviewed by the students. Of the 3200 persons interviewed, 1738 were male and 1462 were female. 1255 persons of those interviewed live in rural areas and the remaining 1945 in urban areas. Random sampling method was followed while undertaking the survey. The survey was confined to peoples' response to the allopathic system of medicine only.

\section*{About the University}

The Tamil Nadu Dr.Ambedkar Law University is a premier institution for legal education, established in the year 1997 in pursuance of the Tamil Nadu Act No. 43 of 1997. As a sui generis model, the University is the first of its kind in the country offering legal education both on its campus and through the affiliated law colleges in the State of Tamil Nadu. All the ten Government Law Colleges and twoPrivate Law Colleges stand affiliated to the Tamil Nadu Dr.Ambedkar Law University. The University has established a School of Excellence in Law in the University Campus.

About the Chair of Excellence on Consumer Law and Jurisprudence
The Chair of Excellence on Consumer Law and Jurisprudence named after late Shri.A.K.Venkata Subramaniam, a former Secretary, Government of India and a Consumer Activist has been functioning since 01.07.2014. The objectives of the Chair, among others, are (i) to provide for the advancement and dissemination of knowledge of law and their role in the development of better education; (ii) to promote legal education and well being of the community generally and (iii) to provide access to legal education of large segments of the population and in particular to the disadvantaged groups.

\section*{Published By}

Shri A.K.Venkata Subramaniam
Chair of Excellence on Consumer Law and Jurisprudence (CECLJ), The Tamil Nadu Dr.Ambedkar Law University, Chennai.

With financial support from
Department of Consumer Affairs
Ministry of Consumer Affairs, Food and Public Distribution,
Government of India.
June - 2019

\section*{About the Survey}

The Surveyon 'Consumer Awareness about Health and Drugs'was conducted in 2017-2018. Eighty student volunteers, ten each from eight affiliated law colleges of the Tamil Nadu Dr.Ambedkar Law University were deployed to undertake the survey under the supervision of the Project Co-ordinators. A total of 3200 persons were interviewed by the students. Of the 3200 persons interviewed, 1738 were male and 1462 were female. 1255 persons of those interviewed live in rural areas and the remaining 1945 in urban areas. Random sampling method was followed while undertaking the survey. The survey was confined to peoples' response to the allopathic system of medicine only.

About the University
The Tamil Nadu Dr.Ambedkar Law University is a premier institution for legal education, established in the year 1997 in pursuance of the Tamil Nadu Act No. 43 of 1997. As a sui generis model, the University is the first of its kind in the country offering legal education both on its campus and through the affiliated law colleges in the State of Tamil Nadu. All the ten Government Law Colleges and twoPrivate Law Colleges stand affiliated to the Tamil Nadu Dr.Ambedkar Law University. The University has established a School of Excellence in Law in the University Campus.

About the Chair of Excellence on Consumer Law and Jurisprudence
The Chair of Excellence on Consumer Law and Jurisprudence named after late Shri.A.K.Venkata Subramaniam, a former Secretary, Government of India and a Consumer Activist has been functioning since 01.07.2014. The objectives of the Chair, among others, are (i) to provide for the advancement and dissemination of knowledge of law and their role in the development of better education; (ii) to promote legal education and well being of the community generally and (iii) to provide access to legal education of large segments of the population and in particular to the disadvantaged groups.

Published By
Shri A.K.Venkata Subramaniam
Chair of Excellence on Consumer Law and Jurisprudence (CECLJ), The Tamil Nadu Dr.Ambedkar Law University, Chennai.

With financial support from
Department of Consumer Affairs,
Ministry of Consumer Affairs, Food and Public Distribution,
Government of India

Consumer Awareness about Health and Drugs in Tamil Nadu Survey Report

\title{
Consumer Awareness about Health and Drugs in Tamil Nadu - Survey Report
}

\section*{Published By}

\section*{CONTENTS}
\begin{tabular}{|c|ll|l|}
\hline S. No. & \multicolumn{2}{|c|}{ Particulars } & \multicolumn{1}{c|}{ Page No. } \\
\hline 1. & Summary of Survey Findings & i-xxv \\
\hline 2. & \begin{tabular}{c}
Questionnaire in English \& \\
Tamil
\end{tabular} & - Annexure-I & \begin{tabular}{l}
xxvi - xxix \\
xxx - xxxiii
\end{tabular} \\
\hline 3. & Details of Target Group & - Annexure-II & xxxiv \\
\hline 4. & Instructions to Field Workers & - Annexure-III & xxxv \\
\hline 5. & Analysis of Data & - Annexure-IV & \(1-264\) \\
\hline 6. & Analysis of Region-wise Data & - Annexure-V & \(1-42\) \\
\hline
\end{tabular}

\title{
Consumer Awareness about Health and Drugs
}

\section*{Summary of Survey Findings}

The Chair of Excellence on Consumer Law and Jurisprudence, named after Shri.A.K.Venkata Subramaniam, set up jointly by the Department of Consumer Affairs, Ministry of Consumer Affairs, Food and Public Distribution, Government of India and the Tamil Nadu Dr.Ambedkar Law University, Chennai has been functioning since July 2014. The Chair has been promoting Consumer awareness and education among students and the general public through publication of compendium of judgments of the Hon'ble Supreme Court and National Commission, organising lectures, seminars and workshops, conducting surveys on topics of consumer interest, holding competitions for school and college students and organising camps in rural areas. One such survey, on Health and Drugs, was conducted in 2017-2018. Eighty student volunteers, ten each from eight affiliated law colleges of the Tamil Nadu Dr.Ambedkar Law University, were deployed to undertake the survey under the supervision of the Project Coordinators. Copies of the questionnaire (both in English and Tamil) distributed to the student volunteers are enclosed at Annexure-I. A total of 3200 persons were interviewed by the students. Of the 3200 persons interviewed, 1738 were male and 1462 were female. 1255 persons of those interviewed live in rural areas and the remaining 1945 in urban areas. The classification of the target group and the number of persons interviewed by each student against target group is enclosed as Annexure-II. Random sampling method was followed while undertaking the survey. Copy of the instructions given to the students who participated in the survey is enclosed as Annexure-III. The classification of the raw data obtained in the survey is given in Annexure-IV. Region wise data is given in Annexure-V. The survey was confined to peoples' response to the allopathic system of medicine only.
2. Tamil Nadu has been divided into four regions and the Districts comprising the regions are given below:

Northern Region: Chennai, Kancheepuram, Tirvallur, Cuddalore, Villupuram, Vellore, Tiruvannamalai. [7 Districts]

SouthernRegion: Madurai, Dindigul, Theni, Ramanathapuram, Sivaganga, Virudhunagar, Tirunelveli, Thoothukkudi, Kanniyakumari. [9 Districts]

Western Region: The Nilgiris, Coimbatore, Tiruppur, Erode, Salem, Krishnagiri, Dharmapuri. [7 Districts]

Central Region: Thanjavur, Tiruvarur, Nagapattinam, Pudukkottai, Trichy, Karur, Perambalur, Ariyalur. [8 Districts]
3. A detailed analysis of the data is given in the following paragraphs:
I. Amount spent on Health and Medicines per month:
(a) Respondents were asked to indicate the amount spent by their families on health and medicines every month. \(48.1 \%\) of the Respondents stated that they spend less than Rs.1,000/- per month, while \(26.9 \%\) spend between Rs.1,001/- and Rs.2,000/- per month. 13.4\% of the Respondents spend between Rs.2,001/- and Rs.3,000/-, while \(6.7 \%\) spend between Rs.3,001 and Rs.5,000/-, only \(4.9 \%\) of the Respondents spend above Rs.5,000/- per month.
(b) There is no appreciable difference between men and women in the amount spent by their families, except in the above Rs.5,000/category, as the following diagram would show.

(c) The percentage of families spending less than Rs.1,000/- per month is highest at \(58.4 \%\) in the western region followed by \(50.2 \%\) in the southern region, \(48.2 \%\) in the central region and \(44 \%\) in northern region. The percentage of families spending between Rs.3,001/- and Rs.5,000/- is highest at \(59.5 \%\) in the northern region while it is relatively low in other regions: \(15.8 \%\) in southern region, \(8.4 \%\) in western region and \(16.3 \%\) in central region. The same trend is noticed in respect of families spending above Rs.5,000/- per month: 53.8\% in northern region, \(19.2 \%\) in southern region, \(13.5 \%\) each in western and central regions.
(d) Figures relating to the amounts spent by the families on health and medicines indicate that more people in the age group of above 60 spend more than Rs.3,000/- per month.
(e) There is very little correlation between the amount spent on medicines and the marital status of the persons concerned.
(f) Families with monthly income of upto Rs.10,000/- spend the following amounts on medicines (i) Upto Rs.1,000/-: 59.6\% (ii) Rs.1,001/- to Rs.2,000/-: 22.7\% (iii) Rs.2,001/- to Rs.3,000/-: 9.8\% (iv) Rs.3,001/- to Rs.5,000/-: 3.6\% and (v) Above Rs.5,000/-: 4.2\%. Families with monthly income of above Rs.30,000/- spend the following amounts (i) Upto Rs.1,000/-: \(29.7 \%\) (ii) Rs.1,001/- to Rs.2,000/-: 22.7\% (iii) Rs.2,001/- to Rs.3,000/-: 19.7\% (iv) Rs.3,001/- to Rs.5,000/-: 16.1\% and (v) Above Rs.5,000/-: 11.8\%.

Amount Spent on Medicines

\((\mathrm{g})\) There is no significant correlation between educational qualification and the amounts spent by the families on medicines.

\section*{II. Purchase of Drugs:}
(a) An overwhelming majority of Respondents (87\%) purchase drugs based on doctor's prescription. While \(6 \%\) of the Respondents purchase drugs on the suggestion of the pharmacist, \(3.4 \%\) of the Respondents go by the advice of their families and friends. The remaining \(3.6 \%\) depend on others.

(b) There is no appreciable difference in the behaviour of Respondents in different regions in this regard. However, the Respondents in the western region seem to depend less on the advice of their families and friends compared to the Respondents in the other regions.
(c) Female Respondents rely on the doctor's prescription a little more (89.1\%) than their male counterparts (85.3\%).
(d) People in the above 60 age group rely more on doctor's prescription than persons in the 18-40 and 41-60 age groups. They also depend less on the advice of family/friends or on the suggestion of the pharmacists than persons in the other age groups.
(e) There is no marked difference between the behaviour of single persons and married persons with regard to taking advice on purchase of medicines.
(f) People in the higher income group (above Rs.30,000/- p.m.) rely more on doctor's prescription than people in other income groups. It is also seen that pharmacists' influence on recommending medicines decreases as the family income of persons buying medicines increases.
(g) It is seen that persons who have not completed SSLC are influenced more by pharmacists and others while purchasing medicines. But in respect of those who are better educated, the influence of family members, friends and pharmacists is much less. Among graduates \(91 \%\) go by doctor's prescription only.
(h) There is no marked difference between people in urban areas and rural areas with regard to being influenced by others in the purchase of medicines.

\section*{III. Government Hospitals vs. Private Hospitals:}
(a) The survey shows that while \(39.6 \%\) of the Respondents go to government hospitals/dispensaries, \(60.4 \%\) prefer to go to private hospitals and clinics.

(b) The percentage of Respondents going to private hospitals is highest at \(78.4 \%\) in the western region while it is \(59.9 \%\) in the northern region, \(54.4 \%\) in the southern region and \(56.8 \%\) in the central region.
(c) \(56.9 \%\) of the Respondents stated that they go to private doctors/clinics for better treatment while \(26.0 \%\) stated that they go because of the availability of better facilities. \(17.1 \%\) of the Respondents stated that they go to private doctors because there is no government hospital nearby.

(d) The percentage of male Respondents going to government hospital is higher at \(42.9 \%\) compared to female Respondents (35.6\%). Consequently, the percentage of female Respondents going to private doctors/clinics is higher at \(64.4 \%\) compared to \(57.1 \%\) among male Respondents.
(e) Respondents in the above 60 age group seem to prefer going to government hospitals than Respondents in other age groups.
(f) 41.9\% of the married Respondents go to government hospitals and \(58.1 \%\) go to private doctors/clinics. In the case of Respondents who are single, \(36 \%\) go to government hospitals while \(64 \%\) go to private doctors/clinics.
(g) There is positive correlation between monthly family income and taking treatment in private hospitals. The percentage of Respondents of different income groups who take treatment in private hospitals is as follows: (i) Income upto Rs.10,000/-: 54.3\% (ii) Income between Rs.10,001/- to Rs.20,000/-: 59.4\% (iii) Income between Rs.20,001/- to Rs.30,000/-: 64.8\% and (iv) Income above Rs.30,000/- per month: \(79.4 \%\). It is also seen that people in the higher income group prefer to go to private doctors/clinics because of better facilities available there.

(h) There is also positive correlation between educational qualification and preference for treatment at private hospitals as seen from the following figures: (i) Below SSLC: \(44.3 \%\) (ii) SSLC: \(56 \%\) (iii) HSC: \(55.2 \%\) and (iv) Graduate: 69.7\%.
(i) \(48.4 \%\) of the Respondents in rural areas go to government hospitals and \(51.6 \%\) go to private clinics. The corresponding figures for Respondents in the urban areas are \(33.9 \%\) and \(66.1 \%\) respectively.
(j) \(58.3 \%\) of the Respondents in rural areas go to private hospitals for better treatment while \(21.5 \%\) do so because of the availability of better facilities. \(20.2 \%\) of the Respondents in rural areas go to private clinics because there is no government hospital nearby. The corresponding figures for Respondents in urban areas are 56.1\%, \(28.4 \%\) and \(15.5 \%\) respectively.

\section*{IV. Awareness about generic drugs:}
(a) Only \(26.2 \%\) of the Respondents had heard of generic drugs while \(61.7 \%\) had not heard about them. \(12.2 \%\) of the Respondents did not want to give any opinion.
(b) There is no appreciable difference in the awareness about generic drugs in different regions. While \(27.2 \%\) of the Respondents had heard about generic drugs in the northern region, \(26.8 \%\), \(24.9 \%\) and \(22.1 \%\) of the Respondents had heard about these drugs in southern, central and western regions respectively.
(c) Of 837 Respondents who had heard about generic drugs, 478 or \(57.1 \%\) were male and 359 or \(42.9 \%\) were female.
(d) Awareness about generic drugs is highest in the age group of 18-40. Of the 837 Respondents who had heard about generic drugs, as many as 646 or \(77.2 \%\) were in the \(18-40\) age groups. 166 Respondents or \(19.8 \%\) were in the \(41-60\) age group and only 25 persons or 3\% of the Respondents were in the above 60 age group.
(e) Marital status did not seem to make any difference to one's awareness about generic drugs. Of the 837 Respondents who had heard about generic drugs. 425 (50.8\%) were married and 412 (49.2\%) were single.
(f) Surprisingly, of the 837 Respondents who had heard about generic drugs, awareness was highest among those who were drawing less than Rs.10,000/- per month. Awareness decreased as the monthly family income went up as seen from the following figures: (i) Upto Rs.10,000/-: 36.9\% (ii) Rs.10,001/- to Rs.20,000/-: 24.5\% (iii) Rs.20,001/- to Rs.30,000/-: \(22.8 \%\) and (iv) Above Rs.30,000/-: \(15.8 \%\). However, among those who were in the income group of above Rs.30,000/- per month, awareness about generic drugs was \(40 \%\) while it was less than \(30 \%\) in respect of other income groups.

(g) There is a positive correlation between educational qualification and awareness about generic drugs. Of the 837 Respondents who had heard of generic drugs, as many as 563 or \(67.3 \%\) were graduates, 133 or \(15.9 \%\) had studied up to HSC, 72 or \(8.6 \%\) had studied up to SSLC and 69 persons or \(8.2 \%\) had not studied up to SSLC.

(h) There is not much difference between people in the rural and urban areas with regard to awareness about generic drugs. Of the 1255 Respondents in the rural areas, 309 or \(24.6 \%\) were aware about generic drugs, while 800 Respondents or \(63.7 \%\) were not aware (the rest had no opinion). In the urban areas of the 1945 Respondents who were interviewed only 528 or \(27.1 \%\) were about generic drugs while 1173 persons or \(60.3 \%\) were not aware.

\section*{V. Awareness about Schedule-H drug:}
(a) Awareness about Schedule-H drug is very limited in almost all regions ranging from \(12.8 \%\) in the northern region to \(9.2 \%\) in the southern region with western and central regions coming in between with awareness levels of \(10.6 \%\) and \(11 \%\) respectively. The awareness percentage for the State as a whole was only \(11.3 \%\) with only 362 Respondents out of 3200 stating that they were aware of Schedule-H drugs. The percentage of Respondents who were not aware of Schedule-H drugs was quite high at \(71.4 \%\) while \(17.3 \%\) of the Respondents did not give any opinion.
(b) 168 Respondents or \(5.3 \%\) obtained Schedule-H drugs without medical prescription, a substantial number of them in the northern (77 Respondents) and southern (61 Respondents) regions. A fairly significant percentage of Respondents (30.5\%) did not give any opinion about getting these drugs without medical prescription.
(c) There is no significant difference between men and women with regard to this aspect. Of the 1738 men who were interviewed, 219 (\(12.6 \%\)) stated that they were aware about Schedule-H drugs while 1218 Respondents (70.1\%) stated that they were not aware about these drugs. 301 Respondents (17.3\%) did not give any opinion. The corresponding figures in percentage for women were \(9.8 \%\), \(73.0 \%\) and \(17.2 \%\) respectively.
(d) Of the 168 Respondents who obtained Schedule-H drugs without prescription, 105 were male and 63 were female.
(e) A significant percentage of Respondents, \(73.8 \%\) who were aware of Schedule-H drugs were in the age group 18-40 while in the age groups of 41-60 and above 60, the awareness percentage was \(21.0 \%\) and \(5.2 \%\) respectively. However, between the different age groups there is not much variation in the percentage of Respondents being aware of Schedule-H drugs or not aware or not giving any opinion.
(f) Among the 168 Respondents who were able to get Schedule-H drugs without medical prescription, an overwhelming majority, 83.9\% (141 Respondents) were in the 18-40 age groups while only 13.1\% (22 Respondents) and 3\% (5 Respondents) were in the 41-60 and above 60 age groups.
(g) There is no significant difference between married Respondents and single Respondents with regard to awareness about Schedule-H drugs.
(h) The survey showed that awareness about Schedule-H drugs was highest among those who were in the category of monthly income exceeding Rs.30,000/-.
(i) Of the 168 persons who obtained Schedule-H drugs without prescription, as many as 67 or \(39.9 \%\) were in the less than Rs.10,000/- income bracket. 36 Respondents or \(21.4 \%\) were in the Rs.10,001/- to Rs.20,000/- income group, while 46 Respondents or \(27.4 \%\) were in the Rs.20,001/- to Rs.30,000/- income group. Only 19 persons (11.3\%) were in the income group exceeding Rs.30,000/- per month.

(j) Not surprisingly graduates were more aware of Schedule-H drugs than the lesser educated Respondents. The percentage of Respondents who were aware of Schedule-H drugs in the different educational qualification categories is as follows: (i) Graduate 67.1\% (ii) HSC 16.0\% (iii) SSLC 7.7\% and (iv) Below SSLC 9.1\%.

(k) Of the 168 Respondents who got Schedule-H drugs without medical prescription. 103 were graduates (\(61.3 \%\)), 26 had HSC qualification (15.5\%), 18 had SSLC qualification (10.7\%) and 21 had below SSLC qualification.
(1) 217 (\(59.9 \%\)) of the 362 Respondents who were aware of ScheduleH drugs were from urban areas, while 145 (40.1\%) were from rural areas.
(m) Surprisingly of the 168 persons who obtained Schedule-H drugs without medical prescription, 89 or \(53 \%\) were from rural areas while 79 or \(47 \%\) were from urban areas.

\section*{VI. Practice of Self-medication:}
(a) Out of 3200 Respondents as many as 1173 or \(36.7 \%\) of the Respondents stated that they practice self-medication. The proportion of Respondents practicing self-medication is relatively high in western and central regions.
(b) The practice is evenly present among male and female Respondents.
(c) There is no correlation between age group or marital status or monthly family income and the practice of self-medication.
(d) The proportion of Respondents practicing self-medication is higher among the less educated categories compared to the better educated groups.
(e) The proportion practicing self-medication is also higher in rural areas than in urban areas.

\section*{VII. Chronic problems for which people take medicines:}
(a) Respondents were asked to identify one among the following major problems for which they take medicines: BP/Hypertension, Heart problems, Diabetes, Stomach ailments, Arthritis and others. Surprisingly, \(65.3 \%\) of the Respondents stated that they take medicines under 'others' category (diseases not mentioned above). \(11 \%\) of the Respondents suffer from BP/Hypertension, followed by diabetes (10.8\%), stomach ailments (8.6\%), heart problems (3.2\%) and arthritis (1.1\%).

(b) There is no significant difference in the percentage of Respondents suffering from above ailments between the four regions.
(c) More male Respondents seem to suffer from heart problems (69.6\%), diabetes (61.4\%) and arthritis (61.8\%) than female Respondents. However, the percentage of female Respondents suffering from stomach ailments is more (55.4\%) than male Respondents (44.6\%).
(d) Of the 3200 Respondents interviewed, \(71.8 \%\) were in the 18-40 age group, \(23.4 \%\) were in the 41-60 age group and the remaining \(4.8 \%\) were in the above 60 age group. But \(11 \%\) of those having BP/Hypertension, \(17.6 \%\) of those having heart problems, \(12.5 \%\) of those having diabetes, \(4 \%\) of those having stomach ailments and \(5.9 \%\) of those having arthritis belong to the above 60 age group. Although \(23.4 \%\) of the Respondents interviewed were in the 41-60 age group, \(38.2 \%\) of persons having BP/Hypertension, \(30.4 \%\) of persons having heart problems, 49.3\% of persons having diabetes, \(41.2 \%\) of persons having arthritis and \(15.6 \%\) of persons having stomach ailments belong to the 41-60 age group.
(e) Although, \(60 \%\) of the 3200 Respondents interviewed were married and \(40 \%\) were single, the percentage of Respondents suffering from major ailments was disproportionately higher among married Respondents as shown here: BP/Hypertension - 81.0\%, heart problems \(-75.5 \%\), diabetes \(-88.4 \%\), arthritis \(-76.5 \%\).
(f) There is no significant correlation between family income and the type of disease that the Respondents suffered from. However, it was noticed that although the percentage of Respondents in the above Rs.30,000/- category was only \(10.3 \%\) of the total, \(11.9 \%\) in this category suffered from BP/Hypertension, 16.7\% from heart problems and \(17.7 \%\) from diabetes.
(g) No significant correlation is found between educational qualification and the chronic problems for which family members take medicines regularly.
(h) Similarly, not much difference is found between rural and urban Respondents with regard to the chronic problems for which they take medicines regularly.

\section*{VIII. Awareness about expiry date:}
(a) The survey showed that \(80.3 \%\) of the Respondents examine the expiry date when they buy medicines. Only \(17.2 \%\) of the Respondents do not do so.

(b) There is no major difference between Respondents in different regions in this regard. On an average about \(80 \%\) of the Respondents examine the expiry date in all the regions.
(c) There is no significant difference between male and female Respondents with regard to examining the expiry date. Of the 3200 Respondents, 225 or \(7 \%\) of the Respondents stated that they had been victims of expired drugs. 129 of them were male and 96 were female.
(d) The percentage of Respondents who were interviewed according to their age groups was as follows: 18-40: 71.8\%, 41-60: 23.4\%, above 60: \(4.8 \%\). But of the Respondents who examined the expiry date while buying medicines, \(73.1 \%\) were in the age group 18-40, \(22.9 \%\) in the age group \(41-60\) and \(4 \%\) in the age group above 60, showing better awareness among persons in the age group 18-40.
(e) There is no significant difference between married Respondents and those that are single with respect to examining the expiry date while buying medicines.
(f) Similarly, there is no correlation between income levels and awareness about expiry date.
(g) The percentage of Respondents who were interviewed according to their educational qualification was as follows: (i) Graduate 50.9\% (ii) HSC 18\% (iii) SSLC 10.9\% and (iv) Below SSLC 20.3\%. The percentages of Respondents who examined the expiry date while buying medicines in these four categories were \(55.2 \%, 17.2 \%\), \(10.8 \%\) and \(16.8 \%\) respectively, showing a positive correlation between educational qualification and awareness about expiry date of medicines.
(h) The survey showed that though the urban Respondents constituted only \(60.8 \%\) of the total Respondents, of the 2569 Respondents who examined the expiry date while buying medicines, 1599 or \(62.2 \%\) were urban Respondents showing relatively greater awareness among urban Respondents.

\section*{IX. Awareness about MRP:}
(a) Awareness about MRP is still not very high. Only \(70.1 \%\) of the Respondents check the MRP before buying drugs while \(25.9 \%\) do not do so. \(4.1 \%\) of the Respondents did not give any opinion.
(b) Awareness is relatively higher in northern and southern regions compared to the western region.
(c) \(8.5 \%\) of the Respondents stated that they had paid more than the MRP while buying drugs.
(d) The percentage of male Respondents (55.9\%) who checked the MRP was higher compared to the percentage of male Respondents who were interviewed (54.3\%). Correspondingly, the percentage of female Respondents (\(44.1 \%\)) who checked the MRP was lower than the percentage interviewed (45.7\%).
(e) There is no significant correlation between the age groups of Respondents and checking MRP while buying medicines.
(f) Similarly, there is no correlation between marital status and checking MRP.
(g) 273 persons or \(8.5 \%\) of the Respondents interviewed had paid more than MRP while buying drugs. Of them 156 were married and 117 were single.
(h) The percentage of Respondents who were interviewed is given below according to their income category: (i) Upto Rs.10,000/-: 42.9\% (ii) Rs.10,001/- to Rs.20,000/-: \(25.7 \%\) (iii) Rs.20,001/- to Rs.30,000/-: 21.2\% and (iv) Above Rs.30,000/-: 10.3\%. The
percentage of Respondents who checked MRP in the above categories was \(40.9 \%, 27.2 \%, 21.1 \%\) and \(10.7 \%\) respectively, showing very little correlation between monthly incomes and checking the MRP while buying medicines.
(i) The percentage of Respondents who were interviewed according to their educational qualification was as follows: (i) Graduate 50.9\% (ii) HSC 18\% (iii) SSLC 10.9\% and (iv) Below SSLC 20.3\%. The percentage of Respondents in these categories who checked the MRP before buying drugs was (i) Graduate 54.3\% (ii) HSC 18.2\% (iii) SSLC \(10.4 \%\) and (iv) Below SSLC \(17.1 \%\), showing mild correlation between educational qualification and checking MRP.

(j) While \(39.2 \%\) of the Respondents who were interviewed were from rural areas, only \(37.7 \%\) of those who checked MRP before buying drugs were from rural areas. On the other hand \(62.3 \%\) of the Respondents who checked MRP were from urban areas although the percentage of Respondents belonging to urban areas who were interviewed was only \(60.8 \%\). These figures indicate that there is greater awareness among people from urban areas.

\section*{\(X\). Use of spurious drugs:}
(a) Only \(5.1 \%\) or 163 out of 3200 Respondents stated that they have come across spurious drugs while \(81.3 \%\) stated that they had not come across spurious drugs. The remaining \(13.6 \%\) of the Respondents did not offer any opinion. When compared to the percentage of Respondents interviewed in different regions the sale
or prevalence spurious drugs was highest in the southern region and lowest in the western region.
(b) The percentage of Respondents who came across spurious drugs was relatively higher in the age group 18-40 compared to the other age groups.
(c) There is no correlation between family income and the incidence of coming across spurious medicines.
(d) The percentage of Respondents who were interviewed according to their educational qualification was as follows: (i) Graduate 50.9\% (ii) HSC 18\% (iii) SSLC 10.9\% and (iv) Below SSLC 20.3\%. The percentage of Respondents in these categories who came across spurious drugs was (i) Graduate 60.1\% (ii) HSC 22.1\% (iii) SSLC \(9.2 \%\) and (iv) Below SSLC \(8.6 \%\), showing positive correlation between educational qualification and identifying spurious drugs.
(e) While \(39.2 \%\) of the Respondents who were interviewed were from rural areas, as much as \(51.5 \%\) of the Respondents who came across spurious drugs were from rural areas. On the other hand though \(60.8 \%\) of the Respondents interviewed were from urban areas, the percentage of Respondents belonging to urban areas who identified spurious drugs was only \(48.5 \%\). These figures show that spurious drugs are sold more in rural areas than in urban areas.

\section*{XI. Complaints about drugs:}
(a) Victims of expired drugs complained to Drug Inspector in \(35.1 \%\) of the cases, to the State Drug Controller in 29.3\% of the cases and to others in \(35.6 \%\) of the cases. More Respondents in the northern (\(39.6 \%\)) and southern (\(34.2 \%\)) regions complained to the officials as compared to \(17.8 \%\) in the central region and \(8.4 \%\) in the western region.

(b) Out of 225 complaints filed with different authorities only 29 or \(12.9 \%\) of the complaints were disposed of to the satisfaction of the complainants. In 95 cases (\(42.2 \%\) of the total) there was no response whatsoever.
(c) Of the 29 complaints satisfactorily disposed of 14 had been given by Graduates, 6 by persons with HSC qualification, 5 by persons with SSLC qualification and 4 by persons having qualifications below SSLC.
(d) There is no correlation between satisfactory disposal of complaint and location of complainant.

\section*{XII. Insistence on bills when buying medicines:}
(a) Out of 3200 Respondents who were interviewed, \(72.9 \%\) only insist on bills when they buy medicines. As much as \(23.8 \%\) do no insist on bills while \(3.3 \%\) have no opinion.

(b) Insistence on bills while buying medicines is highest in central region (\(78.7 \%\)) followed by northern (\(73.7 \%\)), southern (\(70.4 \%\)) and western (69.7\%) regions.
(c) There is no significant correlation between gender or age group or marital status or monthly income or location on the one hand and insistence on bills while buying medicines on the other.
(d) However, it is seen that Respondents with higher educational qualifications insist on bills while buying drugs. \(55.1 \%\) of the Respondents who insisted on bills were graduates while the percentage of graduates who were interviewed was only \(50.9 \%\).

\section*{XIII. Purchase of medicines online:}
(a) Only a small percentage of Respondents (11.7\%) have purchased medicines online while an overwhelming percentage (84.8\%) of the Respondents stated that they have not bought medicines online. \(3.5 \%\) of the Respondents did not give any opinion.
(b) The percentage of Respondents who bought medicines online was comparatively higher in northern and central regions compared to southern and western regions.
(c) The percentage of Respondents who bought medicines online was marginally higher among males.
(d) The percentage of Respondents of different age groups who were interviewed were as follows: (i) 18-40: 71.8\% (ii) 41-60: \(23.4 \%\) (iii) Above 60: 4.8\%. The percentage of Respondents who bought medicines online in the above age groups was as follows: (i) 18-40: 73.9\% (ii) 41-60: 19.7\% (iii) Above 60: 6.4\%.
(e) The survey showed that the percentage of Respondents who bought medicines online was higher in the category having monthly income above Rs.30,000/- compared to other categories.
(f) The percentage of Respondents who were interviewed according to their educational qualification was as follows: (i) Graduate 50.9\% (ii) HSC 18\% (iii) SSLC \(10.9 \%\) and (iv) Below SSLC 20.3\%. The corresponding percentage of Respondents in these categories who bought medicines online was as follows: (i) Graduate 55.8\% (ii) HSC 18.2\% (iii) SSLC 10.9\% and (iv) Below SSLC 15.1\%. These figures indicate that the tendency to buy online is more among those who are better qualified.
(g) Not surprisingly, \(70.9 \%\) of the Respondents who bought medicines online were in the urban areas while \(29.1 \%\) were in the rural areas. The percentage of Respondents who were interviewed was \(60.8 \%\) in urban areas while it was \(39.2 \%\) in rural areas.

\section*{XIV. Overdosage of drugs:}
(a) Of the 3200 persons interviewed only 440 or \(13.8 \%\) were affected due to overdosage. The percentage was relatively higher in northern and southern regions than in western and central regions.
(b) Women are more prone to taking overdosage compared to men.
(c) The percentage of Respondents of different age groups who were interviewed were as follows: (i) 18-40: 71.8\% (ii) 41-60: 23.4\% (iii) Above 60: 4.8\%. The percentage of Respondents who were
affected due to overdosage in the above age groups was as follows: (i) 18-40: 73.2\% (ii) 41-60: 23.2\% (iii) Above 60: 2.7\%. These figures show that as age advances, people are more careful about dosage.

(d) \(60 \%\) of the Respondents who were interviewed were married while \(40 \%\) were single. But \(54.8 \%\) of the Respondents who were affected due to overdosage were married while \(45.2 \%\) were single. These figures show that married persons are more careful about dosage than persons who are single.
(e) There is no correlation between monthly family income or educational qualification and dosage of medicines.
(f) The percentage of Respondents who were affected by overdosage was more in rural areas compared to urban areas when considered as a proportion of Respondents interviewed in these areas.

\section*{XV. Awareness about Consumer Protection Laws:}
(a) Awareness of existing laws for protecting the consumer in the case of counterfeit medicines is still very low in the State with only \(47.3 \%\) of the Respondents stating that they are aware of the laws. Only \(61.8 \%\) of the Respondents are aware of the existence consumer courts for redressal of the grievances relating to malpractices while selling drugs.

(b) There is no correlation between gender and awareness of the laws relating to Consumer Protection.
(c) There is relatively better awareness among persons in the age group 18-40 compared to other age groups with regard to existing laws on Consumer Protection.
(d) The proportion of Respondents being aware of the laws on Consumer Protection is relatively higher in Respondents with higher monthly income.
(e) Similarly, awareness about laws relating to Consumer Protection was higher among those who are more qualified.

\section*{XVI. Filing cases in Consumer Courts:}
(a) The survey showed that out of 1978 persons who were aware of the existence of consumer courts for redressal of grievances only 72 persons or \(3.6 \%\) of the Respondents have actually filed cases in consumer courts. More percentage of Respondents in southern region have filed cases (38.9\%) followed closely by central (26.4\%) and northern regions. Only a small percentage of Respondents (\(9.7 \%\)) in western region have filed cases in consumer courts.
(b) It is gratifying to note that in 51 of the 72 cases (\(70.8 \%\)), the consumer courts have been able to redress grievances. The percentage is again the highest in southern region (41.2\%) followed by central (33.3\%), northern (\(23.5 \%\)) and western (\(2 \%\)) regions.
(c) The percentage of male Respondents who filed cases (63.9\%) is significantly higher than female Respondents (36.1\%). Correspondingly, the percentage of men and women who were able
to get their grievances redressed was also nearly of the same proportion (\(60.8 \%\) male and \(39.2 \%\) female).
(d) There is no correlation between the age group of persons who were aware of the existence of consumer courts and those who filed cases.
(e) Similarly, there is no correlation between monthly family income and filing of cases in consumer courts.
(f) The percentage of persons who were aware of the existence of consumer courts according to their educational qualification was as follows: (i) Graduate 58.6\% (ii) HSC 17.2\% (iii) SSLC 9.7\% and (iv) Below SSLC 14.4\%. The percentage of persons, according to their educational qualification, who filed the cases in consumer courts was (i) Graduate \(56.9 \%\) (ii) HSC \(23.6 \%\) (iii) SSLC \(11.1 \%\) and (iv) Below SSLC 8.3\%. These figures do not indicate any trend between educational qualification and the tendency to file cases in consumer courts for redressal of grievances.

\section*{4. Findings of the survey:}
(a) Nearly \(50 \%\) of the Respondents' families spend less than Rs.1,000/- per month on Health and Drugs. Families in the northern region spend more on medicine while families in the western region spend less.
(b) An overwhelming majority of Respondents (87\%) purchase drugs based on doctor's prescription only. Persons in the lower income groups are influenced by the pharmacists also.
(c) Only about \(40 \%\) of the Respondents go to government hospitals/dispensaries for treatment. Those who go to private hospitals do so for better treatment (56.9\%), availability of better facilities (\(26 \%\)) or because there is no government hospital nearby (17.1\%).
(d) People in the higher income groups prefer private hospitals. There is also a positive correlation between educational qualification and preference for treatment at private hospitals.
(e) \(61.7 \%\) of those interviewed had not heard about generic drugs. Awareness about generic drugs was highest in the 18-40 age group and also among those with family income of less than Rs.10,000/per month. Awareness about generic drugs was higher among those who were better educated.
(f) Awareness about Schedule-H drug was only \(11.3 \%\) in the State as a whole. There was not much difference between regions in this
regard. Awareness was highest (73.8\%) in the 18-40 age groups. Not surprisingly, of those who were able to get Schedule-H drugs without prescription, an overwhelming majority (83.9\%) were in that age group.
(g) Awareness about Schedule-H drugs was higher among high income groups and better educated Respondents. Surprisingly, more persons were able to get Schedule-H drugs without prescription in the rural areas than urban areas.
(h) \(36.7 \%\) of the Respondents stated that they practice selfmedication. The proportion of Respondents practicing selfmedication is relatively high in western and central regions. The percentage of Respondents practicing self-medication is higher in rural areas compared to urban areas.
(i) A large percentage of Respondents (65.3\%) take medicines for diseases other than BP/hypertension, diabetes, stomach ailments, heart problems and arthritis.
(j) More male Respondents seem to suffer from heart problems, diabetes and arthritis than female Respondents. Stomach ailments seem to affect female Respondents more.
(k) Respondents in the highest income category seem to suffer more from BP/hypertension, heart problems and diabetes than Respondents from other income groups.
(1) It is heartening to note that more than \(80 \%\) of the Respondents examine the expiry date when they buy medicines. \(17.2 \%\) of the Respondents do not look at the expiry date even now.
(m) There is a positive correlation between educational qualification and awareness about expiry date. There is greater awareness among urban Respondents than among rural Respondents regarding expiry date though the difference is not very significant.
(n) Awareness about MRP is still only \(70.1 \%\) for the State as the whole which is disappointing. \(8.5 \%\) of the Respondents stated that they paid more than the MRP while buying drugs. Awareness is higher in the northern and southern regions compared to the western region.
(o) Percentage of Respondents who came across spurious drugs is thankfully low at \(5.1 \%\). The Respondents who came across spurious drugs is more in rural areas (51.5\%) than in urban areas (48.5\%).
(p) Complaints to drug control authorities on time expired drugs, spurious drugs etc. did not evoke any response in \(42.2 \%\) of the cases.
(q) As much as \(23.8 \%\) of the Respondents did not insist on bills while buying medicines. Respondents with higher education qualification insist on bills compared to others.
(r) Only \(11.7 \%\) of the Respondents have purchased medicines online. The percentage is higher among male Respondents, those who are better qualified, those who are in the high income category and those who live in urban areas.
(s) Women are more prone to having an overdose of medicines than men. Overdosage is more in rural areas than urban areas.
(t) Only \(47.3 \%\) of the Respondents are aware of the laws relating to consumer protection. Awareness is less among those who are relatively less qualified and earn less.
(u) The percentage of Respondents who filed cases in consumer courts continues to be very, very small at \(3.6 \%\).

\section*{5. Recommendations:}

\section*{(i) Awareness about Consumer Protection Laws:}
(a) The fact that only \(47.3 \%\) of the Respondents are aware of the laws relating to consumer protection shows that a lot more has to be done to increase awareness among the people. No doubt the awareness percentage has gone up by \(14.3 \%\) compared to the findings of the Consumer Awareness Survey conducted by the Chair in August 2015 when it came to light that only \(33 \%\) of the Respondents were aware of the existing laws relating to consumer protection. Since awareness is more among those who are less educated and also earn less, it is clear that the focus should be on the low income, less educated population especially in the rural areas. It is also seen that awareness in less in western region compared to other regions pointing to the need for greater attention in that region.
(b) It is highly disappointing that awareness about MRP is still only \(70.1 \%\) for the State as a whole. It is also shocking to note that \(8.5 \%\) of the Respondents had paid more than the MRP while buying drugs. These figures suggest that not only efforts should be made to create more awareness among the people but the enforcement machinery should be activated to discourage pharmacists from overcharging.
(c) Though it is heartening to note that more than \(80 \%\) of the Respondents examine the expiry date when they buy medicines, the fact that \(17.2 \%\) of the Respondents do not look at the expiry date even now calls for more aggressive awareness campaigns especially in the rural areas.
(d) The percentage of people who go to consumer courts for redressal of grievances is still very low at \(3.6 \%\). Consumer awareness campaigns on the efficacy of consumer courts and speedy disposal of cases by the latter will help in this regard.

\section*{(ii) Purchase and consumption of drugs:}
(a) Although most of the Respondents (87\%) purchase drugs on doctors' prescription only, there are still people who are influenced by the pharmacists, friends and relatives. Our awareness campaigns should focus on this aspect also.
(b) It is shocking to note that more than \(35 \%\) of the Respondents are practicing self-medication. The hazards of self-medication should be explained to the people especially in the rural areas through appropriate awareness campaigns.
(c) Consumer should be educated to insist on bills while buying medicines, since a substantial percentage of Respondents (23.8\%) do not do so.
(d) Drug enforcement authorities should clamp down on those selling spurious drugs. Though, only \(5.1 \%\) of the Respondents came across spurious drugs, the availability of such drugs in rural areas, more than in urban areas, calls for stringent action by the authorities.
(e) Purchase of medicines online has still not caught up with our consumers. Only those in urban areas and those who are better educated are purchasing medicines online. The public have to be educated on the pros and cons of online purchases.
(iii) Government hospitals vs. Private hospitals:

Only about \(40 \%\) of the Respondents stated that they go to government hospitals/dispensaries for treatment. Though the private sector has to be involved in the provision of healthcare, the finding that many people go to private hospitals for better treatment and availability of better facilities should influence the authorities to improve the facilities in government hospitals also.

\section*{(iv) Awareness about generic drugs and special drugs:}
(a) Less than two-third of the Respondents are aware of generic drugs. Awareness is higher among those in the 18-40 age group and among those who are better educated. There is a need for popularizing generic medicines and increasing awareness about them among all sections of the population.
(b) Awareness about Schedule-H Drugs is very low at \(11.3 \%\) for the State as a whole. It is shocking to note that more persons were able to get Schedule-H Drugs without prescription in the rural areas than in urban areas. Here again the drug control authorities have to take stringent measures to prevent the sale of Schedule-H Drugs without valid prescription.

\section*{(v) Complaints to Drug Control Authorities:}

It is disappointing to note that complaints to drug control authorities on time expired drugs, spurious drugs etc. did not evoke any response in \(42 \%\) of the cases. This shows that the enforcement wing will have to be trained to be more responsive while dealing with public complaints.

To sum up, the survey points to the need for organizing more awareness campaigns especially in the rural areas. The western region of the State requires more attention. The awareness campaigns should highlight the importance of getting doctors' prescription, insisting on bills while purchasing medicines, checking the MRP and the expiry date. Awareness should be created about generic drugs, schedule-H drugs and the harmful effects of spurious drugs. The drug control authorities should be asked to intensify their enforcement to prevent sale of drugs without prescription and sale of time expired and spurious drugs.

\section*{Annexure - I}

\section*{QUESTIONNAIRE ON HEALTH AND DRUGS}
1. Name: \(\qquad\)
2. Address:
3. Telephone No if you wish : \(\qquad\)
4. Number of Members in the family : \(\qquad\)
5. Monthly Income :
\(\square\) Less than Rs. 10,000 \(\square\) Rs.10,001-20,000

\(\square\) Above Rs.30,000
6. How much does your family spend on Health and Medicines every month?

6. Age : \(\qquad\)
7. Sex : Male / Female
8. Please tick of the following:
(i) Marital Status : Married / Single / Any Other
(ii) Qualification : Graduated / HSC / SSLC / Below S.S.L.C If so, Please mention:
(iii) Location : Rural / Urban
9. Do you buy medicines based on Doctor's prescription or on the advice of family and friends?
\(\square\) Doctor's Prescription \(\square\) On the advice of Family/ Friends
\(\square\) On the suggestion of the Pharmacist \(\square\) Others
10. (i) Do you / your family members go to a Govt Hospital / Dispensary or a Private Clinic normally?
\(\square\) Doctor

Private Doctor
(ii) If the answer is (b), why do you go to a Private Doctor / Clinic?

11. Have you heard of Generic Drugs?

Yes

No \(\square\) No Opinion
12. What are the chronic problems for which you/your family members take medicines regularly?

13. Do you examine the expiry date when you buy medicines?

14. Have you ever been the victim of expired drugs?

No \(\square\) No Opinion
15. (a) Do you check the MRP (Maximum Retail Price) before buying drugs?
Yes
\(\square\) No \(\square\) No Opinion
(b) Are you charged the MRP or more than/less than the MRP?

16. Do you buy medicines only on the prescription of the Doctor?

No \(\square\) No Opinion

\section*{17. Do you practice Self-medication?}

18. Have you ever come across counterfeit medicines?

19. (a) If yes to question (14), did you complain to:

(b)What was the response to your complaint?

20. Do you insist for bills when you buy medicines?

21. (a) When the particular brand of medicine you are looking for is not available, Are you being asked by the Pharmacies to buy alternative company drugs having the same components?

(b) In that circumstances, Are you ready to buy as advised by the Pharmacy?

22. Have you ever bought medicines through online?

23. Do you look into the dosage level prescribed in the drugs when you buy?
\(\square\) Yes

No
\(\square\) No Opinion
24. Are you aware of Schedule H - drug?
\(\square\) Yes

\(\square\) No Opinion
25. Have you ever got Schedule H - drug without medical prescription?

26. Have you ever been affected because of over dosage of drug?
\(\square\) Yes
\(\square\) No \(\square\) No Opinion
27. If Yes, through which mode, Did you get the drug?
\(\square\) on prescription \(\quad\)\begin{tabular}{l}
Over counter in \\
pharmacy
\end{tabular}\(\quad\)\begin{tabular}{l}
Self medication
\end{tabular}
28. Are you aware of the existing laws for protecting the Consumer in case of counterfeit medicines or any implications arising out of drugs?
Yes
\(\square\)
\(\square\) No Opinion
29. Are you aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs?

\(\square\) No Opinion
30. (a) If yes, have you ever filled a case in the Consumer Court?

(b) If yes to the question (a), was the Consumer Court able to redress your grievance?

\(\square\) No Opinion

\section*{உடல்நலம் மற்றும் மருந்துகள் பற்றிய வினாப்பட்டியல்}
1) ดெயा் :
2) தொலைபேசி எண் :
3) ஊர் மற்றும் மாவட்டம் :
4) வயது :
5) பாலிøம் : \(\square\) ஆண் \(\square\) பெண்
\(\square\) மற்றவவ்
6) மாத வருமானம் :
(அ) \(\square\)
சூ.10,000/-க்கும் குறைவாக
(ஆ) \(\square\) セூ.10,001/- - 20,000/-
(இ) \(\square\) ரூ. 20,001/- - 30,000/-
(ஈ) \(\square\) ரூ. 30,000/-க்கு மேல்
7) உடல்நலம் மற்றும் மருந்துகளுக்காக

உங்களுடைய குடும்பம் மாதம் எவ்வளவு செலவு செய்கிறது?
(அ) \(\square\) ரூ.1,000/-க்கு கீழ்
(இ) \(\square\) ரூ. \(2,001 /-\) - 3,000/-
(உ) \(\square\) ரூ. \(5,000 /-\dot{\text { ®கு மேல் }}\)
(ஆ) \(\square\) ஆ) \(\square\) ரூ. \(1,001 /--2,000 /-\)
(ஈ) \(\square\) ரூ. \(3,001 /-\quad\) 5,000/-
\(\square\) (ஈ) \(\square\) คூ. \(3,001 /-\quad\) 5,000/- ,
10) உடல்நலக்குறைவின் போது தாங்கள் பெரிதும் அணுகுவது.
(i) (அ) \(\square\) அரசு மருத்துவர் (ஆ) \(\square\) தனியார் மருத்துவர்
(ii) மேற்கண்ட கேள்விக்கு விடை (ஆ)எனில், காரணம்
(அ) \(\square\) சிறந்த சிகிச்சைமுறை
(ஆ) \(\qquad\) சிறந்த வசதிகள்
(இ) \(\square\) அரசு மருத்துவமனை அருகில் இல்லாததால்
11) நீங்கள் பொதுவான அல்லது மரபியல்பான மருந்துகள் (Generic Drugs) குறித்து கேள்விப்பட்டிருக்கிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
12) கீழ்க்குறிப்பிட்டவைகளில் எந்தவிதமான நாள்பட்ட நோய்க்கு (Chronic Diseases) தாங்கள் வழக்கமாக மருந்து உட்கொண்டு வருகிற்ர்கள்?
(அ) \(\qquad\) குறைந்த இரத்த அழுத்தம் / உயர் இரத்த அழுத்தம்
(ஆ) \(\qquad\) இதய சம்பந்தமான நோய்கள்
(இ) \(\square\) சர்க்கரை நோய்
(ஈ) \(\square\) வயிறு சம்பந்தமான நோய்கள்
(உ) \(\square\) கீழ் வாதம் சம்பந்தமான நோய்கள்
(ஊ) \(\square\) மேற்குறிப்பிட்டவைகளில் எதுவும் இல்லை
13) நீங்கள் மருந்துகள் வாங்கும்போது காலாவதியாகும் தேதி (Expiry Date) பாா்த்து வாங்குகிறீர்களா?
(அ) \(\qquad\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
14) நீங்கள் எப்போதாவது காலாவதியான மருந்துகளால் பாதிக்கப்பட்டிருக்கிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
15) நீங்கள் மருந்துகள் வாங்கும்போது அதிகபட்ச விலையை (MRP) பார்த்து வாங்குகிறீர்களா?
(i) (அ) \(\qquad\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
(ii) மருந்துகள் வாங்கும்போது கீழ்க்கண்டவைகளில் என்ன விலை கொடுத்து வாங்குகிறீர்கள்?
(அ) \(\square\) MRPæ விட அதிகம்
(ஆ) \(\square\) MRPæ விட குறைவு
(இ) \(\square\) MRP விலையில்
16) உங்களுக்கு ஏற்படும் உடல் உபாதைகளுக்கு நீங்களே மருந்து எடுத்துக்கொள்கிறீர்களா?
(அ) \(\qquad\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
17) தாங்கள் எப்போதாவது போலியான மருந்துகளை வாங்கியதுண்டா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
18) போலியான மற்றும் காலாவதியான மருந்துகள் குறித்து, கீழ்க்கண்டவர்களில் யாருக்கு புகார் தொிவித்துள்ளீர்கள்?
(அ) \(\square\) மருந்து ஆய்வாளர் (ஆ) \(\square\) மாநில மருந்து கட்டுப்பாட்டாளர்
(இ) \(\qquad\) மற்றவர்கள்
19) புகாரின் மீது நடவடிக்கை எப்படி இருந்தது?
(அ) \(\square\) திருப்தியளிக்கும் வகையில் இருந்தது
(ஆ) \(\square\) திருப்தியளிக்கும் வகையில் இல்லை
(இ) \(\square\) கருத்து இல்லை
20) மருந்துகள் வாங்கும்போது மருந்துக்குரிய ரசீதை கேட்டுப்பெறுகிறீர்களா?
(அ) \(\qquad\) ஆம்
(ஆ) \(\square\) இல்லை
\(\square\) (இ) \(\square\) கருத்து இல்லை
21) மருந்துகள் வாங்கும்போது, தாங்கள் எதிர்பார்த்த மருந்து இல்லாதபட்சத்தில், அதே உட்கூறுகள் கொண்ட வேறு கம்பெனி மருந்தை வாங்கும்படி மருந்துகடைக்காரர் அறிவுறுத்துகிறாரா?
(i) (அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
(ii) அவ்வாறான சூழ்நிலைகளில், மருந்துகடைக்காரரின் அறிவுரைப்படி மருந்து வாங்குகிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
22) நீங்கள் எப்போதாவது இணையதளம் (Online) மூலம் மருந்து வாங்கியிருக்கிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
23) மருந்துகள் வாங்கும்போது மருந்தில் குறிப்பிட்டிருக்கும் அளவை உற்று நோக்குகிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
24) Schedule-H மருந்து பற்றி தெரியுமா?
(அ) \(\square\) ஆம்
(ஆ) \(\qquad\) இல்லை
(இ) \(\square\) கருத்து இல்லை
25) தாங்கள் எப்போதாவது Schedule-H மருந்தை மருத்துவரின் பரிந்துரைசீட்டு இல்லாமல் வாங்கியிருக்கிறீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
26) தாங்கள் எப்போதாவது மருந்தின் அளவு அதிகமானதால் பாதிக்கப்பட்டிருக்கிறீர்களா?
(i) (அ) \(\qquad\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
(ii) மேற்கண்ட கேள்விக்கு விடை (அ)எனில், அந்த மருந்தை எவ்வாறு பெற்றீர்கள்?
(அ) \(\square\) மருத்துவாின் பாிந்துரைசீட்டின்படி
(ஆ) \(\qquad\) மருந்து கடைக்காரரிடமிருந்து
(இ) \(\qquad\) தாமாகவே வாங்கி உட்கொண்டது
27) போலி மருந்துகள் மற்றும் மருந்துகளினால் ஏற்படும் பாதிப்புகளுக்கு எதிராக பாதுகாப்பு தரும் தற்போதைய சட்டங்கள் குறித்து தாங்கள் அறிவீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ)
\(\square\) கருத்து இல்லை
28) மேற்குறிப்பிட்ட பிரச்சனைகளுக்காக புகார் தொடுப்பதற்கு நுகர்வோர் நீதிமன்றம் உண்டு என்பதை தாங்கள் அறிவீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை
29) மேற்கூறிய கேள்விக்கு விடை (அ)எனில், நீங்கள் எப்போதாவது நுகர்வோர் நீதிமன்றத்தில் வழக்கு தாக்கல் செய்துள்ளீர்களா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\)
இல்லை
(இ) \(\qquad\) கருத்து இல்லை
30) மேற்கூறிய கேள்விக்கு விடை (அ)எனில், நுகர்வோர் நீதிமன்றம் தங்களுடைய குறைகளைக் களைந்து நிவாரணம் வழங்கியதா?
(அ) \(\square\) ஆம்
(ஆ) \(\square\) இல்லை
(இ) \(\square\) கருத்து இல்லை

கள ஆய்வாளர்/ மாணவர் (பெயர் மற்றும் கையொப்பம்)

ஒருங்கிணைப்பாளர்/ மேற்பார்வையாளர் (பெயர் மற்றும் கையொப்பம்)

\section*{Annexure - II}

\section*{Details of Target Group}
\begin{tabular}{|l|r|}
\hline No. of Days Scheduled for Survey & 4 \\
\hline \begin{tabular}{l}
No. of Persons to be interviewed per day by each \\
student
\end{tabular} & 10 \\
\hline No. of Students involved in Survey \((8 \times 10)\) & 80 \\
\hline Total Number of Targeted People \((4 \times 10 \times 80)\) & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Classification of the Target Group & Percentage of Persons to be interviewed by each Student \\
\hline \multicolumn{2}{|l|}{Social Status Based} \\
\hline \begin{tabular}{l}
i. Married \\
ii. Unmarried
\end{tabular} & \[
\begin{array}{r}
12 \\
8
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{Location Based} \\
\hline \begin{tabular}{l}
i. Rural \\
ii. Urban
\end{tabular} & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Income Based} \\
\hline \begin{tabular}{l}
i. Upto Rs. \(10,000 /-\) p.m. \\
ii. Rs.10,001-20,000/- p.m. \\
iii. Rs.20,001-30,000/- p.m. \(\}\) \\
iv. Above Rs.30,000/- p.m. \}
\end{tabular} & \[
\begin{array}{r}
10 \\
5 \\
5
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{Education Based} \\
\hline \begin{tabular}{l}
i. Graduate Level \\
ii. S.S.L.C \& H.S.C \\
iii. Below S.S.L.C
\end{tabular} & \[
\begin{array}{r}
5 \\
5 \\
10
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{Gender Based} \\
\hline \begin{tabular}{l}
i. Male \\
ii. Female
\end{tabular} & 10
10 \\
\hline
\end{tabular}

\section*{Annexure - III}

\section*{Instructions to Field Workers}
\(>\) Collect the Voter's List in your City.
> Follow the Random Sampling method.
\(>\) From the Voter's List, select twenty respondents (target group), through the above method, ten from the Urban area and ten from the rural area of the district. For example, persons with serials numbers \(15,25,35,45,55\) etc may be selected or persons with serial numbers \(11,31,51,71,91\) etc may be selected. If a particular respondent, say Serial No. 71 in your list is not available, then you may go to S.No. 72 .
> If any Respondent doesn't fill the personal details, don't force him/her to do so.
> Choose the Respondents who are willing to answer the questionnaire. Don't choose the Respondents who are uninterested or unwilling.
> Approach the Respondents when they are free and give them sufficient time to fill the questionnaire.
> If they are not able to understand the question, please explain it to them and answer the queries which they ask.
\(>\) If the respondent is illiterate/semi-literate, you should explain all the questions patiently and get the answers.
\(>\) If any one of the Respondents does not return the questionnaire within a reasonable time, then go to the next Respondent.
> Under no circumstances should you answer the questionnaire yourself for the sake of completing the survey.
> Please remember that authenticity of the data collected and integrity of the persons interviewing/interviewed are very important for the success of the survey.

Annexure-IV

\section*{Analysis of Data}

\section*{Frequency Table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Age Group in years} \\
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{4}{*}{Valid} & 18-40 & 2299 & 71.8 & 71.8 & 71.8 \\
\hline & 41-60 & 748 & 23.4 & 23.4 & 95.2 \\
\hline & \begin{tabular}{l}
Above \\
60
\end{tabular} & 153 & 4.8 & 4.8 & 100.0 \\
\hline & Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Gender
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Male & 1738 & 54.3 & 54.3 & 54.3 \\
& Female & 1462 & 45.7 & 45.7 & 100.0 \\
& Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Monthly Income
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \multicolumn{1}{c|}{\begin{tabular}{c}
Cumulative \\
Percent
\end{tabular}} \\
\hline Valid & Upto & 1372 & 42.9 & 42.9 & 42.9 \\
& 10000 & & & 25.7 & 68.5 \\
& \(10001-\) & 25.7 & 21.2 & 89.7 \\
& 20000 & & & & \\
& 20001- & & 21.2 & 10.3 & 100.0 \\
& Above & 330 & 10.3 & 100.0 & \\
& A0000 & 3200 & 100.0 & & \\
\hline
\end{tabular}

Amount spent family on Health and Medicines per month
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{6}{*}{Valid} & \[
\begin{aligned}
& \hline \text { Upto } \\
& 1000
\end{aligned}
\] & 1539 & 48.1 & 48.1 & 48.1 \\
\hline & \[
\begin{aligned}
& 1001- \\
& 2000
\end{aligned}
\] & 862 & 26.9 & 26.9 & 75.0 \\
\hline & \[
\begin{aligned}
& 2001- \\
& 3000
\end{aligned}
\] & 428 & 13.4 & 13.4 & 88.4 \\
\hline & \[
\begin{aligned}
& 3001- \\
& 5000
\end{aligned}
\] & 215 & 6.7 & 6.7 & 95.1 \\
\hline & Above 5000 & 156 & 4.9 & 4.9 & 100.0 \\
\hline & Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Marital Status
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Married & 1919 & 60.0 & 60.0 & 60.0 \\
& Single & 1281 & 40.0 & 40.0 & 100.0 \\
& Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

\section*{Educational Qualification}
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Graduate & 1628 & 50.9 & 50.9 & 50.9 \\
& HSc & 576 & 18.0 & 18.0 & 68.9 \\
& SSLC & 348 & 10.9 & 10.9 & 79.8 \\
& Below & 648 & 20.3 & 20.3 & 100.0 \\
& SSLC & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

\section*{Location}
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Rural & 1255 & 39.2 & 39.2 & 39.2 \\
& Urban & 1945 & 60.8 & 60.8 & 100.0 \\
& Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Buy medicines
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{6}{*}{Valid} & & 2785 & 87.0 & 87.0 & 87.0 \\
\hline & Prescription Advice of & & & & 90.5 \\
\hline & Family/ Friends & 110 & 3.4 & 3.4 & 90.5 \\
\hline & Suggestion of the Pharmacist & 191 & 6.0 & 6.0 & 96.4 \\
\hline & Others & 114 & 3.6 & 3.6 & 100.0 \\
\hline & Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Family members go to Clinic normally
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Cumulative \\
Percent
\end{tabular}} \\
\hline Valid & Govt & & & \\
& Hospital / & 1266 & 39.6 & 39.6 & 39.6 \\
& Dispensar & & & & \\
& y & & & & \\
& Private & 1934 & 60.4 & 60.4 & 100.0 \\
& Clinic & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

\section*{Reason for go to a Private Doctor / Clinic}
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Fetter Treatment & 1100 & 34.4 & 56.9 & 56.9 \\
& Better Facilities & 504 & 15.8 & 26.1 & 82.9 \\
& No Govt.Hospital & 330 & 10.3 & 17.1 & 100.0 \\
& nearby & 1934 & 60.4 & 100.0 & \\
& Total & 1266 & 39.6 & & \\
Missing & System & 3200 & 100.0 & & \\
Total & & & & \\
\hline
\end{tabular}

Heard of Generic Drugs
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 837 & 26.2 & 26.2 & 26.2 \\
& No & 1973 & 61.7 & 61.7 & 87.8 \\
& No & 390 & 12.2 & 12.2 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Chronic problems for which family members take medicines regularly
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & BP/Hyperten & 353 & 11.0 & 11.0 & 11.0 \\
& Srequency & Percent & Valid Percent & \\
& Seart & 102 & 3.2 & 3.2 & 14.2 \\
& Problems & 345 & 10.8 & 10.8 & 25.0 \\
& Diabetes & 276 & 8.6 & 8.6 & 33.6
\end{tabular}
\begin{tabular}{l|r|r|r|r|}
Arthritis & 34 & 1.1 & 1.1 & 34.7 \\
Others & 2090 & 65.3 & 65.3 & 100.0 \\
Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

\section*{Examine the expiry date when buy medicines}
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 2569 & 80.3 & 80.3 & 80.3 \\
& No & 550 & 17.2 & 17.2 & 97.5 \\
& No & 81 & 2.5 & 2.5 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Victim of expired drugs
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 225 & 7.0 & 7.0 & 7.0 \\
& No & 2750 & 85.9 & 85.9 & 93.0 \\
& No & 225 & 7.0 & 7.0 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Check the MRP (Maximum Retail Price) before buying drugs
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 2242 & 70.1 & 70.1 & 70.1 \\
& No & 828 & 25.9 & 25.9 & 95.9 \\
& No & 130 & 4.1 & 4.1 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Total & 3200 & 100.0 & 100.0 \\
\hline
\end{tabular}

Charged the MRP of buying drugs
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Above & 273 & 8.5 & 8.5 & 8.5 \\
& MRP & & & \\
& Below & 631 & 19.7 & 19.7 & 28.3 \\
& MRP & 2296 & 71.8 & 71.8 & 100.0 \\
& At MRP & Percent & Valid Percent & \\
& Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Practice Self-medication
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 1173 & 36.7 & 36.7 & 36.7 \\
& No & 1802 & 56.3 & 56.3 & 93.0 \\
& No & 225 & 7.0 & 7.0 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Come across counterfeit medicines
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 163 & 5.1 & 5.1 & 5.1 \\
& No & 2601 & 81.3 & 81.3 & 86.4 \\
& No & 436 & 13.6 & 13.6 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

If victim of expired drugs, complain to officials
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Drug Inspector & 79 & 2.5 & 35.1 & 35.1 \\
& State Drug & 66 & 2.1 & 29.3 & 64.4 \\
& Controller & 80 & 2.5 & 35.6 & 100.0 \\
& Others & 225 & 7.0 & 100.0 & \\
& Total & 2975 & 93.0 & & \\
Missing & System & 3200 & 100.0 & & \\
Total & & & & \\
\hline
\end{tabular}

Satisfaction level of complaints
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{4}{*}{Valid} & Satisfactory & 29 & . 9 & 12.9 & 12.9 \\
\hline & \begin{tabular}{l}
Not \\
Satisfactory
\end{tabular} & 101 & 3.2 & 44.9 & 57.8 \\
\hline & No & 95 & 3.0 & 42.2 & 100.0 \\
\hline & Total & 225 & 7.0 & 100.0 & \\
\hline Missing & System & 2975 & 93.0 & & \\
\hline Total & & 3200 & 100.0 & & \\
\hline
\end{tabular}

Insist for bills when buy medicines
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 2334 & 72.9 & 72.9 & 72.9 \\
& No & 760 & 23.8 & 23.8 & 96.7 \\
& No & 106 & 3.3 & 3.3 & 100.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Total & 3200 & 100.0 & 100.0 \\
\hline
\end{tabular}

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & Frequency & Percent & Valid Percent & \begin{tabular}{c}
(
\end{tabular} \\
& No & 992 & 64.8 & 64.8 & 94.8 \\
& No & 31.0 & 31.0 & 95.8 \\
& opinion & 136 & 4.3 & 4.3 & 100.0 \\
& Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Ready to buy as advised by the Pharmacy
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 1359 & 42.5 & 42.5 & 42.5 \\
& No & 1659 & 51.8 & 51.8 & 94.3 \\
& No & 182 & 5.7 & 5.7 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
& Total & & & \\
\hline
\end{tabular}

Bought medicines through online
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 375 & 11.7 & 11.7 & 11.7 \\
& No & 2713 & 84.8 & 84.8 & 96.5 \\
& No & 112 & 3.5 & 3.5 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
& Total & & & \\
\hline
\end{tabular}

\section*{Look into the dosage level prescribed in the drugs when buy medicine}
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 1805 & 56.4 & 56.4 & 56.4 \\
& No & 1236 & 38.6 & 38.6 & 95.0 \\
& No & 159 & 5.0 & 5.0 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Aware of Schedule H - drug
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 362 & 11.3 & 11.3 & 11.3 \\
& No & 2285 & 71.4 & 71.4 & 82.7 \\
& No & 553 & 17.3 & 17.3 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Got Schedule H - drug without medical prescription
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 168 & 5.3 & 5.3 & 5.3 \\
& No & 2057 & 64.3 & 64.3 & 69.5 \\
& No & 975 & 30.5 & 30.5 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Affected due to over dosage of drug
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 440 & 13.8 & 13.8 & 13.8 \\
& No & 2443 & 76.3 & 76.3 & 90.1 \\
& No & 317 & 9.9 & 9.9 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

If yes, mode of get the drug
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & On prescription & 196 & 6.1 & 44.5 & 44.5 \\
& Overcounter in & 121 & 3.8 & 27.5 & 72.0 \\
& pharmacy & Percent & Valid Percent & \begin{tabular}{rl}
\\
& Self medication \\
& Total
\end{tabular} 123 & 3.8 \\
& 440 & 13.8 & 100.0 & \\
& System & 2760 & 86.3 & & \\
Missing & & 3200 & 100.0 & & \\
\hline
\end{tabular}

Aware of the existing laws for protecting the Consumer in case of counterfeit medicines
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 1512 & 47.3 & 47.3 & 47.3 \\
& No & 1393 & 43.5 & 43.5 & 90.8 \\
& No & 295 & 9.2 & 9.2 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs
\begin{tabular}{|ll|r|r|r|r|}
\hline & & Frequency & Percent & Valid Percent & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 1978 & 61.8 & 61.8 & 61.8 \\
& No & 1008 & 31.5 & 31.5 & 93.3 \\
& No & 214 & 6.7 & 6.7 & 100.0 \\
& opinion & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

If yes, filled a case in the Consumer Court
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Frequency & Percent & Valid Percent & 3.6 \\
& No & 72 & 2.3 & 3.6 & 96.1 \\
& No opinion & 1828 & 57.1 & 92.4 & 100.0 \\
& Total & 78 & 2.4 & 3.9 & \\
Missing & System & 1228 & 61.8 & 100.0 & \\
Total & & 3200 & 100.0 & & \\
\hline
\end{tabular}

If files case, Consumer Court able to redress grievance
\begin{tabular}{|ll|r|r|r|r|}
\hline & & & & & \begin{tabular}{c}
Cumulative \\
Percent
\end{tabular} \\
\hline Valid & Yes & 51 & 1.6 & 70.8 & 70.8 \\
& No & 12 & .4 & 16.7 & 87.5 \\
& No opinion & 9 & .3 & 12.5 & 100.0 \\
& Total & 72 & 2.3 & 100.0 & \\
Missing & System & 3128 & 97.8 & & \\
Total & & 3200 & 100.0 & & \\
\hline
\end{tabular}

\section*{Crosstabs}

\section*{Age Group in years * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{10}{*}{Age Group in years} & \multirow[t]{4}{*}{18-40} & Count & 1198 & 1101 & 2299 \\
\hline & & \% within Age & & & \\
\hline & & Group in years & 52.1\% & 47.9\% & 100.0\% \\
\hline & & \% within & 68.9\% & 75.3\% & 71.8\% \\
\hline & \multirow[t]{3}{*}{41-60} & Gender & 434 & 314 & 748 \\
\hline & & \% within Age Group in years & 58.0\% & 42.0\% & 100.0\% \\
\hline & & \% within Gender & 25.0\% & 21.5\% & 23.4\% \\
\hline & \multirow[t]{3}{*}{Above 60} & Count & 106 & 47 & 153 \\
\hline & & \% within Age Group in years & 69.3\% & 30.7\% & 100.0\% \\
\hline & & \% within Gender & 6.1\% & 3.2\% & 4.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Age Group in years & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|c|c|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(22.458(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 22.946 & 2 & .000 \\
Linear-by-Linear & 21.515 & 1 & .000 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells (.0\%) have expected count less than 5. The minimum expected count is 69.90.

\section*{Monthly Income * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{12}{*}{Monthly Income} & \multirow[t]{3}{*}{Upto 10000} & Count & 656 & 716 & 1372 \\
\hline & & \% within Monthly Income & 47.8\% & 52.2\% & 100.0\% \\
\hline & & \% within Gender & 37.7\% & 49.0\% & 42.9\% \\
\hline & \multirow[t]{3}{*}{10001-20000} & Count & 530 & 291 & 821 \\
\hline & & \% within Monthly Income & 64.6\% & 35.4\% & 100.0\% \\
\hline & & \% within Gender & 30.5\% & 19.9\% & 25.7\% \\
\hline & \multirow[t]{3}{*}{20001-30000} & Count & 340 & 337 & 677 \\
\hline & & \% within Monthly Income & 50.2\% & 49.8\% & 100.0\% \\
\hline & & \% within Gender & 19.6\% & 23.1\% & 21.2\% \\
\hline & \multirow[t]{3}{*}{Above 30000} & Count & 212 & 118 & 330 \\
\hline & & \% within Monthly Income & 64.2\% & 35.8\% & 100.0\% \\
\hline & & \% within Gender & 12.2\% & 8.1\% & 10.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Monthly Income & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(75.746(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 76.546 & 3 & .000 \\
Linear-by-Linear & 19.292 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 150.77 .
Amount spent family on Health and Medicines per month * Gender

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{11}{*}{Amount spent family on Health and Medicines per month} & Upto 1000 & Count & 838 & 701 & 1539 \\
\hline & & \% within Amount spent family on & & & \\
\hline & & spent family on Health and & 54.5\% & 45.5\% & 100.0\% \\
\hline & & Medicines per month & & & \\
\hline & & \% within Gender & 48.2\% & 47.9\% & 48.1\% \\
\hline & 1001-2000 & Count & 471 & 391 & 862 \\
\hline & & \% within Amount spent family on & & & \\
\hline & & Health and & 54.6\% & 45.4\% & 100.0\% \\
\hline & & Medicines per month & & & \\
\hline & & \% within Gender & 27.1\% & 26.7\% & 26.9\% \\
\hline & 2001-3000 & Count & 236 & 192 & 428 \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.196(\mathrm{a})\) & 4 & .185 \\
Likelihood Ratio & 6.183 & 4 & .186 \\
Linear-by-Linear & .066 & & 1
\end{tabular}

Marital Status * Gender

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{6}{*}{Marital Status} & \multirow[t]{3}{*}{Married} & Count & 1021 & 898 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 53.2\% & 46.8\% & 100.0\% \\
\hline & & \% within Gender & 58.7\% & 61.4\% & 60.0\% \\
\hline & \multirow[t]{6}{*}{Single} & Count & 717 & 564 & 1281 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 56.0\% & 44.0\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Gender
\end{tabular} & 41.3\% & 38.6\% & 40.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(2.370(b)\) & 1 & .124 & & \\
Continuity & 2.260 & 1 & .133 & & \\
Correction(a) & 2.372 & 1 & .124 & & \\
Likelihood Ratio & & 1 & &
\end{tabular}
\begin{tabular}{|l|r|r|r|l|l|}
Fisher's Exact Test & & & & .128 & .066 \\
Linear-by-Linear & 2.370 & 1 & & \\
Association & 3200 & & & & \\
N of Valid Cases & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells (\(.0 \%\)) have expected count less than 5 . The minimum expected count is 585.26.

\section*{Educational Qualification * Gender}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Crosstab} \\
\hline & & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{14}{*}{Educational Qualification} & \multirow[t]{4}{*}{Graduate} & Count & 890 & 738 & 1628 \\
\hline & & \% within & & & \\
\hline & & Educational Qualification & 54.7\% & 45.3\% & 100.0\% \\
\hline & & \% within Gender & 51.2\% & 50.5\% & 50.9\% \\
\hline & \multirow[t]{3}{*}{HSc} & Count & 303 & 273 & 576 \\
\hline & & \begin{tabular}{l}
\% within \\
Educational
\end{tabular} & 52.6\% & 47.4\% & 100.0\% \\
\hline & & Qualification \% within Gender & 17.4\% & 18.7\% & 18.0\% \\
\hline & \multirow[t]{3}{*}{SSLC} & Count & 206 & 142 & 348 \\
\hline & & \% within Educational Qualification & 59.2\% & 40.8\% & 100.0\% \\
\hline & & \% within Gender & 11.9\% & 9.7\% & 10.9\% \\
\hline & \multirow[t]{5}{*}{Below SSLC} & Count & 339 & 309 & 648 \\
\hline & & \% within & 52.3\% & 47.7\% & 100.0\% \\
\hline & & Qualification & & & \\
\hline & & \% within Gender & 19.5\% & 21.1\% & 20.3\% \\
\hline Total & & Count & 1738 & 1462 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within \\
Educational \\
Qualification \\
\% within Gender
\end{tabular} & \(54.3 \%\) & \(45.7 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(5.146(\mathrm{a})\) & & 3 \\
\hline Likelihood Ratio & 5.168 & & .161 \\
Linear-by-Linear & .190 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 158.99.

\section*{Location * Gender}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{6}{*}{Location} & Rural & Count & 689 & 566 & 1255 \\
\hline & & \% within Location & 54.9\% & 45.1\% & 100.0\% \\
\hline & & \% within Gender & 39.6\% & 38.7\% & 39.2\% \\
\hline & Urban & Count & 1049 & 896 & 1945 \\
\hline & & \% within Location & 53.9\% & 46.1\% & 100.0\% \\
\hline & & \% within Gender & 60.4\% & 61.3\% & 60.8\% \\
\hline Total & & Count & 1738 & 1462 & 3200 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} \\
\hline Value & df & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Continuity & \(.288(b)\) & 1 & .592 & & \\
Correction(a) & .250 & & 1 & .617 & \\
Likelihood Ratio & .288 & & 1 & .592 & \\
Fisher's Exact Test & & & & & \\
Linear-by-Linear & .288 & 1 & .592 & & \\
Association & & & & & \\
N of Valid Cases & 3200 & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 573.38 .

\section*{Buy medicines * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{5}{*}{Buy medicines} & \multirow[t]{3}{*}{Doctor's Prescription} & Count & 1482 & 1303 & 2785 \\
\hline & & \% within Buy medicines & 53.2\% & 46.8\% & 100.0\% \\
\hline & & \% within Gender & 85.3\% & 89.1\% & 87.0\% \\
\hline & \multirow[t]{2}{*}{Advice of Family/ Friends} & Count & 63 & 47 & 110 \\
\hline & & \% within Buy medicines & 57.3\% & 42.7\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(17.116(\mathrm{a})\) & 3 & .001 \\
Likelihood Ratio & 17.761 & & 3
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 50.26 .

\section*{Family members go to Clinic normally * Gender}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Family members go to Clinic normally} & Govt Hospital / & Count & 745 & 521 & 1266 \\
\hline & Dispensary & \% within Family members go to Clinic normally & 58.8\% & 41.2\% & 100.0\% \\
\hline & & \% within Gender & 42.9\% & 35.6\% & 39.6\% \\
\hline & Private Clinic & Count & 993 & 941 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 51.3\% & 48.7\% & 100.0\% \\
\hline & & \% within Gender & 57.1\% & 64.4\% & 60.4\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} \\
\hline Value & df & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(17.356(b)\) & 1 & .000 & & \\
Continuity & 17.055 & 1 & .000 & & \\
Likelihood Ratio & 17.407 & & 1 & .000 & \\
Fisher's Exact Test & & & & & \\
Linear-by-Linear & 17.350 & 1 & .000 & & .000 \\
Association & 3200 & & & & \\
N of Valid Cases & & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 578.40.

\section*{Reason for go to a Private Doctor / Clinic * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 554 & 546 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 50.4\% & 49.6\% & 100.0\% \\
\hline & & \% within Gender & 55.8\% & 58.0\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 273 & 231 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 54.2\% & 45.8\% & 100.0\% \\
\hline & & \% within Gender & 27.5\% & 24.5\% & 26.1\% \\
\hline & \multirow[t]{3}{*}{No Govt.Hospital nearby} & Count & 166 & 164 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 50.3\% & 49.7\% & 100.0\% \\
\hline & & \% within Gender & 16.7\% & 17.4\% & 17.1\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 993 & 941 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 51.3\% & 48.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(2.174(\mathrm{a})\) & 2 & .337 \\
Likelihood Ratio & 2.176 & & 2 \\
Linear-by-Linear & .192 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 160.56 .

\section*{Heard of Generic Drugs * Gender}

Crosstab

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 4.186(a) & 2 & . 123 \\
\hline Likelihood Ratio & 4.194 & 2 & . 123 \\
\hline Linear-by-Linear & 1.415 & 1 & . 234 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 178.18.
Chronic problems for which family members take medicines regularly * Gender
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{8}{*}{Chronic problems for which family members take medicines regularly} & BP/Hypertension & Count & 179 & 174 & 353 \\
\hline & & \% within Chronic & & & \\
\hline & & family members take medicines regularly & 50.7\% & 49.3\% & 100.0\% \\
\hline & & \% within Gender & 10.3\% & 11.9\% & 11.0\% \\
\hline & Heart Problems & Count & 71 & 31 & 102 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 69.6\% & 30.4\% & 100.0\% \\
\hline & & \% within Gender & 4.1\% & 2.1\% & 3.2\% \\
\hline & Diabetes & Count & 212 & 133 & 345 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \% within Chronic problems for which family members take medicines regularly & 61.4\% & 38.6\% & 100.0\% \\
\hline & & \% within Gender & 12.2\% & 9.1\% & 10.8\% \\
\hline & Stomach Ailments & Count & 123 & 153 & 276 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 44.6\% & 55.4\% & 100.0\% \\
\hline & & \% within Gender & 7.1\% & 10.5\% & 8.6\% \\
\hline & Arthritis & Count & 21 & 13 & 34 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 61.8\% & 38.2\% & 100.0\% \\
\hline & & \% within Gender & 1.2\% & .9\% & 1.1\% \\
\hline & Others & Count & 1132 & 958 & 2090 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 54.2\% & 45.8\% & 100.0\% \\
\hline & & \% within Gender & 65.1\% & 65.5\% & 65.3\% \\
\hline Total & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}

\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(29.894(\mathrm{a})\) & 5 & .000 \\
Likelihood Ratio & 30.273 & 5 & .000 \\
Linear-by-Linear & .181 & 1 & .671 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 15.53 .

\section*{Examine the expiry date when buy medicines * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{9}{*}{Examine the expiry date when buy medicines} & \multirow[t]{3}{*}{Yes} & Count & 1375 & 1194 & 2569 \\
\hline & & \% within Examine the expiry date when buy medicines & 53.5\% & 46.5\% & 100.0\% \\
\hline & & \% within Gender & 79.1\% & 81.7\% & 80.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 316 & 234 & 550 \\
\hline & & \% within Examine the expiry date when buy medicines & 57.5\% & 42.5\% & 100.0\% \\
\hline & & \% within Gender & 18.2\% & 16.0\% & 17.2\% \\
\hline & \multirow[t]{5}{*}{No opinion} & Count & 47 & 34 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 58.0\% & 42.0\% & 100.0\% \\
\hline & & \% within Gender & 2.7\% & 2.3\% & 2.5\% \\
\hline \multirow[t]{2}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 54.3\% & 45.7\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline & \% within Gender & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.284(\mathrm{a})\) & 2 & .194 \\
Likelihood Ratio & 3.295 & 2 & .193 \\
Linear-by-Linear & 3.055 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 37.01 .

\section*{Victim of expired drugs * Gender}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{10}{*}{Victim of expired drugs} & Yes & Count & 129 & 96 & 225 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 57.3\% & 42.7\% & 100.0\% \\
\hline & & \% within & & & \\
\hline & & Gender & 7.4\% & 6.6\% & 7.0\% \\
\hline & No & Count & 1480 & 1270 & 2750 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 53.8\% & 46.2\% & 100.0\% \\
\hline & & \% within Gender & 85.2\% & 86.9\% & 85.9\% \\
\hline & No opinion & Count & 129 & 96 & 225 \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|}
& \begin{tabular}{l}
\% within \\
Victim of \\
expired drugs \\
\% within \\
Gender
\end{tabular} & \(57.3 \%\) & \(42.7 \%\) & \(100.0 \%\) \\
Total & \begin{tabular}{l}
Count \\
\% within
\end{tabular} & \(17.4 \%\) & \(6.6 \%\) & 1462
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(1.926(\mathrm{a})\) & 2 & .382 \\
Likelihood Ratio & 1.932 & 2 & .381 \\
Linear-by-Linear & .000 & 1 & 1.000 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 102.80 .
Check the MRP (Maximum Retail Price) before buying drugs * Gender

Crosstab

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 8.933(a) & 2 & . 011 \\
\hline Likelihood Ratio & 8.913 & 2 & . 012 \\
\hline Linear-by-Linear & 5.315 & 1 & . 021 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline Nof Valid Cases & 3200 & & \\
\hline
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 59.39 .

\section*{Charged the MRP of buying drugs * Gender}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{9}{*}{Charged the MRP of buying drugs} & \multirow[t]{3}{*}{Above MRP} & Count & 137 & 136 & 273 \\
\hline & & \% within Charged the MRP of buying drugs & 50.2\% & 49.8\% & 100.0\% \\
\hline & & \% within Gender & 7.9\% & 9.3\% & 8.5\% \\
\hline & \multirow[t]{3}{*}{Below MRP} & Count & 369 & 262 & 631 \\
\hline & & \% within Charged the MRP of buying drugs & 58.5\% & 41.5\% & 100.0\% \\
\hline & & \% within Gender & 21.2\% & 17.9\% & 19.7\% \\
\hline & \multirow[t]{6}{*}{At MRP} & Count & 1232 & 1064 & 2296 \\
\hline & & \% within Charged the MRP of buying drugs & 53.7\% & 46.3\% & 100.0\% \\
\hline & & \% within Gender & 70.9\% & 72.8\% & 71.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Charged the MRP of buying drugs & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.685(\mathrm{a})\) & 2 & .035 \\
Likelihood Ratio & 6.705 & 2 & .035 \\
Linear-by-Linear & .044 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 124.73 .

\section*{Practice Self-medication * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{9}{*}{Practice Selfmedication} & \multirow[t]{3}{*}{Yes} & Count & 633 & 540 & 1173 \\
\hline & & \begin{tabular}{l}
\% within \\
Practice Selfmedication
\end{tabular} & 54.0\% & 46.0\% & 100.0\% \\
\hline & & \% within Gender & 36.4\% & 36.9\% & 36.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 968 & 834 & 1802 \\
\hline & & \begin{tabular}{l}
\% within \\
Practice Selfmedication
\end{tabular} & 53.7\% & 46.3\% & 100.0\% \\
\hline & & \% within Gender & 55.7\% & 57.0\% & 56.3\% \\
\hline & \multirow[t]{7}{*}{No opinion} & Count & 137 & 88 & 225 \\
\hline & & \begin{tabular}{l}
\% within \\
Practice Selfmedication
\end{tabular} & 60.9\% & 39.1\% & 100.0\% \\
\hline & & \% within Gender & 7.9\% & 6.0\% & 7.0\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within & & & \\
\hline & & Practice Selfmedication & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.236(a)\) & 2 & .120 \\
Likelihood Ratio & 4.277 & 2 & .118 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l}
Linear-by-Linear \\
Association \\
N of Valid Cases
\end{tabular} & 1.286 \\
& 3200
\end{tabular}\(|\)\begin{tabular}{c}
1 \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 102.80

\section*{Come across counterfeit medicines * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{10}{*}{Come across counterfeit medicines} & \multirow[t]{4}{*}{Yes} & Count & 96 & 67 & 163 \\
\hline & & \% within Come & & & \\
\hline & & across counterfeit & 58.9\% & 41.1\% & 100.0\% \\
\hline & & \begin{tabular}{l}
medicines \\
\% within Gender
\end{tabular} & 5.5\% & 4.6\% & 5.1\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1374 & 1227 & 2601 \\
\hline & & \% within Come across counterfeit medicines & 52.8\% & 47.2\% & 100.0\% \\
\hline & & \% within Gender & 79.1\% & 83.9\% & 81.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 268 & 168 & 436 \\
\hline & & \% within Come across counterfeit medicines & 61.5\% & 38.5\% & 100.0\% \\
\hline & & \% within Gender & 15.4\% & 11.5\% & 13.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Come across counterfeit medicines & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \begin{tabular}{r}
\(12.693(a)\) \\
12.806
\end{tabular} & 2 & .002 \\
Likelihood Ratio & 3.940 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 74.47 .

\section*{If victim of expired drugs, complain to officials * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{10}{*}{If victim of expired drugs, complain to officials} & Drug Inspector & Count & 52 & 27 & 79 \\
\hline & & \% within If victim of & & & \\
\hline & & expired drugs, complain to officials & 65.8\% & 34.2\% & 100.0\% \\
\hline & & \% within Gender & 40.3\% & 28.1\% & 35.1\% \\
\hline & State Drug Controller & Count & 31 & 35 & 66 \\
\hline & & \% within If victim of expired drugs, complain to officials & 47.0\% & 53.0\% & 100.0\% \\
\hline & & \% within Gender & 24.0\% & 36.5\% & 29.3\% \\
\hline & Others & Count & 46 & 34 & 80 \\
\hline & & \% within If victim of expired drugs, complain to officials & 57.5\% & 42.5\% & 100.0\% \\
\hline & & \% within Gender & 35.7\% & 35.4\% & 35.6\% \\
\hline Total & & Count & 129 & 96 & 225 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within If victim of \\
expired drugs, \\
complain to officials \\
\% within Gender
\end{tabular} & \(57.3 \%\) & \(42.7 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(5.226(a)\) & 2 & .073 \\
Likelihood Ratio & 5.241 & 2 & .073 \\
Linear-by-Linear & 1.106 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 28.16.

\section*{Satisfaction level of complaints * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{7}{*}{Satisfaction level of complaints} & Satisfactory & Count & 19 & 10 & 29 \\
\hline & & \% within & & & \\
\hline & & Satisfaction level of complaints & 65.5\% & 34.5\% & 100.0\% \\
\hline & & \% within Gender & 14.7\% & 10.4\% & 12.9\% \\
\hline & Not Satisfactory & Count & 54 & 47 & 101 \\
\hline & & \% within Satisfaction level of complaints & 53.5\% & 46.5\% & 100.0\% \\
\hline & & \% within Gender & 41.9\% & 49.0\% & 44.9\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Total} & \multirow[t]{8}{*}{No Response} & Count & 56 & 39 & 95 \\
\hline & & \% within & & & \\
\hline & & Satisfaction level of complaints & 58.9\% & 41.1\% & 100.0\% \\
\hline & & \% within Gender & 43.4\% & 40.6\% & 42.2\% \\
\hline & & Count & 129 & 96 & 225 \\
\hline & & \% within & & & \\
\hline & & Satisfaction level of complaints & 57.3\% & 42.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.513(\mathrm{a})\) & 2 & .469 \\
Likelihood Ratio & 1.526 & 2 & .466 \\
Linear-by-Linear & .027 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 12.37.

\section*{Insist for bills when buy medicines * Gender}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(6.180(\mathrm{a})\) & 2 & .046 \\
Likelihood Ratio & 6.237 & 2 & .044 \\
Linear-by-Linear & 5.902 & & 1
\end{tabular}\() .015\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecter
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 48.43 .

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Gender

Crosstab
\begin{tabular}{|l|l|l|l|}
\hline & & Gender & Total \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
& & \\
\begin{tabular}{l}
\% within When the \\
particular brand of \\
medicine looking for \\
is not available, \\
asked by the \\
Pharmacies to buy \\
alternative company \\
drugs having the \\
same components \\
\% within Gender
\end{tabular} & \(54.3 \%\) & \(45.7 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Vearson Chi-Square & \(8.604(\mathrm{a})\) & 2 & .014 \\
Likelihood Ratio & 8.750 & 2 & .013 \\
Linear-by-Linear & .350 & & 1
\end{tabular}
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expect
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 62.14 .
Ready to buy as advised by the Pharmacy * Gender
Crosstab
\begin{tabular}{|l|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Gender } & \\
& & \multicolumn{1}{|c|}{ Male } & \multicolumn{1}{c|}{\begin{tabular}{l}
Female
\end{tabular}} & \multicolumn{1}{c|}{ Total } \\
\hline \begin{tabular}{l}
Ready to buy as \\
advised by the \\
Pharmacy
\end{tabular} & Yes & \begin{tabular}{l}
Count \\
\% within Ready to \\
buy as advised by \\
the Pharmacy \\
\% within Gender
\end{tabular} & 561 & 598 \\
1359 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 3.180(a) & 2 & . 204 \\
\hline Likelihood Ratio & 3.181 & 2 & . 204 \\
\hline Linear-by-Linear & 1.564 & 1 & . 211 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 83.15 .

\section*{Bought medicines through online * Gender}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{Bought medicines through online} & Yes & Count & 216 & 159 & 375 \\
\hline & & \% within Bought medicines through online & 57.6\% & 42.4\% & 100.0\% \\
\hline & & \% within Gender & 12.4\% & 10.9\% & 11.7\% \\
\hline & No & Count & 1454 & 1259 & 2713 \\
\hline & & \% within Bought medicines through online & 53.6\% & 46.4\% & 100.0\% \\
\hline & & \% within Gender & 83.7\% & 86.1\% & 84.8\% \\
\hline & No opinion & Count & 68 & 44 & 112 \\
\hline & & \% within Bought medicines through online & 60.7\% & 39.3\% & 100.0\% \\
\hline & & \% within Gender & 3.9\% & 3.0\% & 3.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Bought medicines through online & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.048(\mathrm{a})\) & 2 & .132 \\
Likelihood Ratio & 4.074 & 2 & .130 \\
Linear-by-Linear & .230 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 51.17.
Look into the dosage level prescribed in the drugs when buy medicine * Gender

\section*{Crosstab}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(3.221(\mathrm{a})\) & 2 & .200 \\
Likelihood Ratio & 3.244 & 2 & .198 \\
Linear-by-Linear & 2.625 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 72.64 .

\section*{Aware of Schedule H - drug * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{9}{*}{Aware of Schedule H - drug} & \multirow[t]{3}{*}{Yes} & Count & 219 & 143 & 362 \\
\hline & & \% within Aware of Schedule H-drug & 60.5\% & 39.5\% & 100.0\% \\
\hline & & \% within Gender & 12.6\% & 9.8\% & 11.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1218 & 1067 & 2285 \\
\hline & & \% within Aware of Schedule H-drug & 53.3\% & 46.7\% & 100.0\% \\
\hline & & \% within Gender & 70.1\% & 73.0\% & 71.4\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 301 & 252 & 553 \\
\hline & & \% within Aware of Schedule H-drug & 54.4\% & 45.6\% & 100.0\% \\
\hline & & \% within Gender & 17.3\% & 17.2\% & 17.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1738 & 1462 & 3200 \\
\hline & & \% within Aware of Schedule H-drug & 54.3\% & 45.7\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.520(\mathrm{a})\) & 2 & .038 \\
Likelihood Ratio & 6.574 & 2 & .037 \\
Linear-by-Linear & 2.107 & & 1
\end{tabular}
a 0 cells (\(.0 \%\)) have expected count less than 5 . The minimum expected count is 165.39 .
Got Schedule H - drug without medical prescription * Gender
Crosstab

\begin{tabular}{|cl|r|r|r|}
& prescription & & \\
Total & \begin{tabular}{l}
\% within Gender \\
Count \\
\% within Got
\end{tabular} & \(28.8 \%\) & \(32.5 \%\) & \(30.5 \%\) \\
& \begin{tabular}{l}
Schedule H - drug \\
without medical \\
prescription \\
\% within Gender
\end{tabular} & 1738 & 1462 & 3200 \\
& & \(54.3 \%\) & \(45.7 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(8.636(a)\) & 2 & .013 \\
Likelihood Ratio & 8.691 & 2 & .013 \\
Linear-by-Linear & 8.041 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 76.76 .
Affected due to over dosage of drug * Gender
Crosstab
\begin{tabular}{|l|l|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{ Gender } \\
\cline { 3 - 4 } & & \multicolumn{2}{|c|}{\begin{tabular}{c}
Male
\end{tabular}} \\
\hline \begin{tabular}{l}
Affected due to \\
over dosage of \\
drug
\end{tabular} & Yes & \begin{tabular}{l}
Count \\
\% within Affected \\
due to over \\
dosage of drug
\end{tabular} & 228 & 212
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(8.595(\mathrm{a})\) & 2 & .014 \\
Likelihood Ratio & 8.684 & 2 & .013 \\
Linear-by-Linear & 6.487 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 144.83 .

\section*{If yes, mode of get the drug * Gender}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & On prescription & Count & 100 & 96 & 196 \\
\hline & & \% within If yes, mode of get the drug & 51.0\% & 49.0\% & 100.0\% \\
\hline & & \% within Gender & 43.9\% & 45.3\% & 44.5\% \\
\hline & Overcounter in & Count & 62 & 59 & 121 \\
\hline & pharmacy & \% within If yes, mode of get the drug & 51.2\% & 48.8\% & 100.0\% \\
\hline & & \% within Gender & 27.2\% & 27.8\% & 27.5\% \\
\hline & Self medication & Count & 66 & 57 & 123 \\
\hline & & \% within If yes, mode of get the drug & 53.7\% & 46.3\% & 100.0\% \\
\hline & & \% within Gender & 28.9\% & 26.9\% & 28.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 228 & 212 & 440 \\
\hline & & \% within If yes, mode of get the drug & 51.8\% & 48.2\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Value }\end{array}\)} & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(.233(a)\) & 2 & .890 \\
Likelihood Ratio & .233 & 2 & .890 \\
Linear-by-Linear & .191 & & 1
\end{tabular}\(] .662\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecter
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 58.30 .

\section*{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Gender}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{13}{*}{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines} & \multirow[t]{5}{*}{Yes} & \multirow[t]{2}{*}{\begin{tabular}{l}
Count \\
\% within Aware of the existing laws for protecting the
\end{tabular}} & \multirow[t]{2}{*}{820} & \multirow[t]{2}{*}{692} & \multirow[t]{2}{*}{1512} \\
\hline & & & & & \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
Consumer in case \\
of counterfeit \\
medicines \\
\% within Gender
\end{tabular}} & \multirow[t]{2}{*}{54.2\%} & \multirow[t]{2}{*}{45.8\%} & \multirow[t]{2}{*}{100.0\%} \\
\hline & & & & & \\
\hline & & & 47.2\% & 47.3\% & 47.3\% \\
\hline & \multirow[t]{4}{*}{No} & Count & \multirow[t]{2}{*}{753} & \multirow[t]{2}{*}{640} & \multirow[t]{2}{*}{1393} \\
\hline & & \multirow[t]{3}{*}{\% within Aware of the existing laws for protecting the Consumer in case of counterfeit medicines \% within Gender} & & & \\
\hline & & & 54.1\% & 45.9\% & 100.0\% \\
\hline & & & 43.3\% & 43.8\% & 43.5\% \\
\hline & \multirow[t]{4}{*}{No opinion} & Count & \multirow[t]{2}{*}{165} & \multirow[t]{2}{*}{130} & \multirow[t]{2}{*}{295} \\
\hline & & \multirow[t]{3}{*}{\% within Aware of the existing laws for protecting the Consumer in case of counterfeit medicines \% within Gender} & & & \\
\hline & & & 55.9\% & 44.1\% & 100.0\% \\
\hline & & & 9.5\% & 8.9\% & 9.2\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & \multirow[t]{2}{*}{1738} & \multirow[t]{2}{*}{1462} & \multirow[t]{2}{*}{3200} \\
\hline & & \multirow[t]{3}{*}{\% within Aware of the existing laws for protecting the Consumer in case of counterfeit medicines \% within Gender} & & & \\
\hline & & & 54.3\% & 45.7\% & 100.0\% \\
\hline & & & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(.353(a)\) & 2 & .838 \\
Likelihood Ratio & .353 & 2 & .838 \\
Linear-by-Linear & .107 & & 1
\end{tabular}\() .743\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expected
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 134.78.

\section*{Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Gender}

Crosstab

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(5.028(\mathrm{a})\) & 2 & .081 \\
Likelihood Ratio & 5.086 & 2 & .079 \\
Linear-by-Linear & 2.077 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 97.77 .

\section*{If yes, filled a case in the Consumer Court * Gender}
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{10}{*}{If yes, filled a case in the Consumer Court} & \multirow[t]{4}{*}{Yes} & Count & 46 & 26 & 72 \\
\hline & & \% within If yes, & & & \\
\hline & & filled a case in the Consumer Court & 63.9\% & 36.1\% & 100.0\% \\
\hline & & \% within Gender & 4.3\% & 2.8\% & 3.6\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 973 & 855 & 1828 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 53.2\% & 46.8\% & 100.0\% \\
\hline & & \% within Gender & 91.4\% & 93.6\% & 92.4\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 46 & 32 & 78 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 59.0\% & 41.0\% & 100.0\% \\
\hline & & \% within Gender & 4.3\% & 3.5\% & 3.9\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1065 & 913 & 1978 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 53.8\% & 46.2\% & 100.0\% \\
\hline & & \% within Gender & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}
Chi-Square Tests
\(\square\)
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(4.029(\mathrm{a})\) & 2 & .133 \\
Likelihood Ratio & 4.086 & 2 & .130 \\
Linear-by-Linear & .280 & 1 & .597 \\
Association & & & \\
N of Valid Cases & 1978 & &
\end{tabular}
a 0 cells (.0\%) have expected count less than 5. The minimum expected count is 33.23 .
If files case, Consumer Court able to redress grievance * Gender

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Gender} & \multirow[b]{2}{*}{Total} \\
\hline & & & Male & Female & \\
\hline \multirow[t]{15}{*}{If files case, Consumer Court able to redress grievance} & \multirow[t]{5}{*}{Yes} & Count & 31 & 20 & 51 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 60.8\% & 39.2\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Gender & 67.4\% & 76.9\% & 70.8\% \\
\hline & \multirow[t]{5}{*}{No} & Count & 8 & 4 & 12 \\
\hline & & \% within If files case, Consumer Court & & & \\
\hline & & Consumer Court able to redress & 66.7\% & 33.3\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Gender & 17.4\% & 15.4\% & 16.7\% \\
\hline & \multirow[t]{5}{*}{No opinion} & Count & 7 & 2 & 9 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 77.8\% & 22.2\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Gender & 15.2\% & 7.7\% & 12.5\% \\
\hline \multicolumn{2}{|l|}{Total} & Count & 46 & 26 & 72 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within If files case, \\
Consumer Court \\
able to redress \\
grievance
\end{tabular} & \(63.9 \%\) & \(36.1 \%\) & \(100.0 \%\) \\
\% within Gender
\end{tabular}\(\quad 100.0 \% ~ 100.0 \% ~ 100.0 \% ~ 1\)

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.006(\mathrm{a})\) & 2 & .605 \\
Likelihood Ratio & 1.063 & 2 & .588 \\
Linear-by-Linear & .967 & 1 & .326 \\
Association & & & \\
N of Valid Cases & 72 & & \\
a 2 cells (33.3\%) have expected count
\end{tabular}
a 2 cells \((33.3 \%)\) have expected count less than 5 . The minimum expected count is 3.25 .

\section*{Crosstabs}

\section*{Gender * Age Group in years}

Crosstab
\begin{tabular}{|ll|r|r|r|r|r|}
\hline & & & \multicolumn{3}{|c|}{ Age Group in years } & \\
\cline { 3 - 5 } & & \multicolumn{1}{|c|}{\(18-40\)} & \multicolumn{1}{c|}{\(41-60\)} & \multicolumn{1}{c|}{ Above 60 } & \multicolumn{1}{c|}{ Total } \\
\hline Gender & Male & \begin{tabular}{l}
Count \\
\% within
\end{tabular} & 1198 & 434 & 106 & 1738 \\
& \begin{tabular}{l}
Gender \\
\% within
\end{tabular} \\
\begin{tabular}{l}
Age Group \\
in years \\
Count
\end{tabular} & \(58.9 \%\) & \(25.0 \%\) & \(6.1 \%\) & \(100.0 \%\) \\
& Female & 1101 & \(58.0 \%\) & \(69.3 \%\) & \(54.3 \%\) \\
& & & 314 & 47 & 1462
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|}
& \begin{tabular}{l}
\% within \\
Gender \\
\% within
\end{tabular} & \(75.3 \%\) & \(21.5 \%\) & \(3.2 \%\) & \(100.0 \%\) \\
Total & \begin{tabular}{l}
Age Group \\
in years
\end{tabular} & \(47.9 \%\) & \(42.0 \%\) & \(30.7 \%\) & \(45.7 \%\) \\
& \begin{tabular}{l}
Count \\
\% within \\
Gender \\
\% within \\
Age Group \\
in years
\end{tabular} & 2299 & \(71.8 \%\) & \(23.4 \%\) & 153
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(22.458(a)\) & & 2 \\
Likelihood Ratio & 22.946 & & .000 \\
Linear-by-Linear & 21.515 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 69.90

\section*{Monthly Income * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{3}{*}{Monthly Income} & Upto 10000 & Count & 983 & 310 & 79 & 1372 \\
\hline & & \% within Monthly Income & 71.6\% & 22.6\% & 5.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 42.8\% & 41.4\% & 51.6\% & 42.9\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(36.906(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 35.344 & 6 & .000 \\
Linear-by-Linear & .002 & & 1
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 15.78 .
Amount spent family on Health and Medicines per month * Age Group in years

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{Above 5000} & & 106 & 39 & 11 & 156 \\
\hline & & \% within Amount spent family on Health and Medicines per month & 67.9\% & 25.0\% & 7.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 4.6\% & 5.2\% & 7.2\% & 4.9\% \\
\hline & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Amount spent family on Health and Medicines per month & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.115(\mathrm{a})\) & 8 & .057 \\
Likelihood Ratio & 14.535 & 8 & .069 \\
Linear-by-Linear & 9.761 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 7.46 .

\section*{Marital Status * Age Group in years}

\section*{Crosstab}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{6}{*}{Marital Status} & \multirow[t]{3}{*}{Married} & Count & 1061 & 712 & 146 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\% within Age
\end{tabular} & 55.3\% & 37.1\% & 7.6\% & 100.0\% \\
\hline & & Group in years & 46.2\% & 95.2\% & 95.4\% & 60.0\% \\
\hline & \multirow[t]{3}{*}{Single} & Count & 1238 & 36 & 7 & 1281 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\% within Age
\end{tabular} & 96.6\% & 2.8\% & .5\% & 100.0\% \\
\hline & & Group in years & 53.8\% & 4.8\% & 4.6\% & 40.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\% within Age
\end{tabular} & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(649.454(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 789.098 & 2 & .000 \\
Linear-by-Linear & 568.749 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 61.25 .

\section*{Educational Qualification * Age Group in years}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(301.292(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 285.254 & 6 & .000 \\
Linear-by-Linear & 263.847 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 16.64 .

\section*{Location * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{7}{*}{Location} & \multirow[t]{3}{*}{Rural} & Count & 888 & 305 & 62 & 1255 \\
\hline & & \begin{tabular}{l}
\% within \\
Location \\
\% within
\end{tabular} & 70.8\% & 24.3\% & 4.9\% & 100.0\% \\
\hline & & Age Group in years & 38.6\% & 40.8\% & 40.5\% & 39.2\% \\
\hline & \multirow[t]{3}{*}{Urban} & Count & 1411 & 443 & 91 & 1945 \\
\hline & & \% within Location \% within & 72.5\% & 22.8\% & 4.7\% & 100.0\% \\
\hline & & Age Group in years & 61.4\% & 59.2\% & 59.5\% & 60.8\% \\
\hline & & Count & 2299 & 748 & 153 & 3200 \\
\hline \multirow{2}{*}{Total} & & \% within Location \% within & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(1.209(a)\) & 2 & .546 \\
Likelihood Ratio & 1.206 & 2 & .547 \\
Linear-by-Linear & 1.012 & & 1
\end{tabular}\() .314\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expected
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 60.00 .
Buy medicines * Age Group in years
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{10}{*}{Buy medicines} & \multirow[t]{3}{*}{Doctor's Prescription} & Count & 1996 & 652 & 137 & 2785 \\
\hline & & \% within Buy medicines & 71.7\% & 23.4\% & 4.9\% & 100.0\% \\
\hline & & \% within Age Group in years & 86.8\% & 87.2\% & 89.5\% & 87.0\% \\
\hline & \multirow[t]{3}{*}{Advice of Family/ Friends} & Count & 80 & 28 & 2 & 110 \\
\hline & & \% within Buy medicines & 72.7\% & 25.5\% & 1.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 3.5\% & 3.7\% & 1.3\% & 3.4\% \\
\hline & \multirow[t]{3}{*}{Suggestion of the Pharmacist} & Count & 137 & 46 & 8 & 191 \\
\hline & & \begin{tabular}{l}
\% within Buy medicines \\
o/ within A
\end{tabular} & 71.7\% & 24.1\% & 4.2\% & 100.0\% \\
\hline & & \% within Age Group in years & 6.0\% & 6.1\% & 5.2\% & 6.0\% \\
\hline & Others & Count & 86 & 22 & 6 & 114 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \begin{tabular}{l}
\% within Buy \\
medicines \\
\% within Age Group \\
in years
\end{tabular} & \begin{tabular}{l}
\[
75.4 \%
\] \\
3.7\%
\end{tabular} & \begin{tabular}{l}
19.3\% \\
2.9\%
\end{tabular} & 5.3\%
3.9\% & \(100.0 \%\)
\(3.6 \%\) \\
\hline & Count & 2299 & 748 & 153 & 3200 \\
\hline & \% within Buy medicines & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.612(\mathrm{a})\) & 6 & .729 \\
Likelihood Ratio & 4.289 & 6 & .638 \\
Linear-by-Linear & .523 & & 1
\end{tabular}
a 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 5.26

\section*{Family members go to Clinic normally * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline Family members go & Govt Hospital / & Count & 910 & 292 & 64 & 1266 \\
\hline to Clinic normally & Dispensary & \% within Family members go to Clinic normally & 71.9\% & 23.1\% & 5.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 39.6\% & 39.0\% & 41.8\% & 39.6\% \\
\hline
\end{tabular}

61
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{Private Clinic} & Count & 1389 & 456 & 89 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 71.8\% & 23.6\% & 4.6\% & 100.0\% \\
\hline & & \% within Age Group in years & 60.4\% & 61.0\% & 58.2\% & 60.4\% \\
\hline & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{c}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(.416(\mathrm{a})\) & 2 & .812 \\
Likelihood Ratio & .414 & 2 & .813 \\
Linear-by-Linear & .037 & 1 & .847 \\
Association & 3200 & & \\
N of Valid Cases & & &
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 60.53 .

\section*{Reason for go to a Private Doctor / Clinic * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline Reason for go to a & Better Treatment & Count & 759 & 282 & 59 & 1100 \\
\hline Private Doctor / Clinic & & \% within Reason for go to a Private Doctor / & 69.0\% & 25.6\% & 5.4\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Clinic & & & & \\
\hline & & \% within Age Group in years & 54.6\% & 61.8\% & 66.3\% & 56.9\% \\
\hline & Better Facilities & Count & 399 & 88 & 17 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 79.2\% & 17.5\% & 3.4\% & 100.0\% \\
\hline & & \% within Age Group in years & 28.7\% & 19.3\% & 19.1\% & 26.1\% \\
\hline & No Govt.Hospital nearby & Count & 231 & 86 & 13 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 70.0\% & 26.1\% & 3.9\% & 100.0\% \\
\hline & & \% within Age Group in years & 16.6\% & 18.9\% & 14.6\% & 17.1\% \\
\hline Total & & Count & 1389 & 456 & 89 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 71.8\% & 23.6\% & 4.6\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(19.353(\mathrm{a})\) & 4 & .001 \\
Likelihood Ratio & 20.078 & 4 & .000 \\
Linear-by-Linear & 3.605 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 15.19.

Heard of Generic Drugs * Age Group in years

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(24.954(\mathrm{a})\) & 4 & .000 \\
Likelihood Ratio & 25.814 & 4 & .000 \\
Linear-by-Linear & 5.069 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 18.65 .
Chronic problems for which family members take medicines regularly * Age Group in years

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{7}{*}{Chronic problems for which family members take medicines regularly} & BP/Hypertension & Count & 179 & 135 & 39 & 353 \\
\hline & & \% within Chronic problems for which & & & & \\
\hline & & family members take medicines regularly & 50.7\% & 38.2\% & 11.0\% & 100.0\% \\
\hline & & \% within Age Group in years & 7.8\% & 18.0\% & 25.5\% & 11.0\% \\
\hline & Heart Problems & Count & 53 & 31 & 18 & 102 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 52.0\% & 30.4\% & 17.6\% & 100.0\% \\
\hline & & \% within Age Group in years & 2.3\% & 4.1\% & 11.8\% & 3.2\% \\
\hline
\end{tabular}

65
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Diabetes & & 132 & 170 & 43 & 345 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 38.3\% & 49.3\% & 12.5\% & 100.0\% \\
\hline & & \% within Age Group in years & 5.7\% & 22.7\% & 28.1\% & 10.8\% \\
\hline & Stomach Ailments & Count & 222 & 43 & 11 & 276 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 80.4\% & 15.6\% & 4.0\% & 100.0\% \\
\hline & & \% within Age Group in years & 9.7\% & 5.7\% & 7.2\% & 8.6\% \\
\hline & Arthritis & Count & 18 & 14 & 2 & 34 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 52.9\% & 41.2\% & 5.9\% & 100.0\% \\
\hline & & \% within Age Group in years & .8\% & 1.9\% & 1.3\% & 1.1\% \\
\hline & Others & Count & 1695 & 355 & 40 & 2090 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 81.1\% & 17.0\% & 1.9\% & 100.0\% \\
\hline & & \% within Age Group in years & 73.7\% & 47.5\% & 26.1\% & 65.3\% \\
\hline Total & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within Age Group \\
in years
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(437.292(\mathrm{a})\) & 10 & .000 \\
Likelihood Ratio & 399.938 & 10 & .000 \\
Linear-by-Linear & 309.198 & & 1
\end{tabular}
a 2 cells \((11.1 \%)\) have expected count less than 5 . The minimum expected count is 1.63 .

\section*{Examine the expiry date when buy medicines * Age Group in years}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{No opinion} & Count & 56 & 17 & 8 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 69.1\% & 21.0\% & 9.9\% & 100.0\% \\
\hline & & \% within Age Group in years & 2.4\% & 2.3\% & 5.2\% & 2.5\% \\
\hline & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(21.563(\mathrm{a})\) & 4 & .000 \\
Likelihood Ratio & 19.267 & & 4
\end{tabular}
a 1 cells \((11.1 \%)\) have expected count less than 5 . The minimum expected count is 3.87 .

\section*{Victim of expired drugs * Age Group in years}

\section*{Crosstab}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.410(\mathrm{a})\) & 4 & .171 \\
Likelihood Ratio & 6.491 & & 4
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 10.76 .
Check the MRP (Maximum Retail Price) before buying drugs * Age Group in years
Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.566(\mathrm{a})\) & 4 & .468 \\
Likelihood Ratio & 3.208 & 4 & .524 \\
Linear-by-Linear & 1.805 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 6.22

\section*{Charged the MRP of buying drugs * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{8}{*}{Charged the MRP of buying drugs} & \multirow[t]{3}{*}{Above MRP} & Count & 202 & 64 & 7 & 273 \\
\hline & & \% within Charged the MRP of buying drugs \% within Age & 74.0\% & 23.4\% & 2.6\% & 100.0\% \\
\hline & & Group in years & 8.8\% & 8.6\% & 4.6\% & 8.5\% \\
\hline & \multirow[t]{3}{*}{Below MRP} & Count & 455 & 144 & 32 & 631 \\
\hline & & \% within Charged the MRP of buying drugs \% within Age & 72.1\% & 22.8\% & 5.1\% & 100.0\% \\
\hline & & Group in years & 19.8\% & 19.3\% & 20.9\% & 19.7\% \\
\hline & \multirow[t]{2}{*}{At MRP} & Count & 1642 & 540 & 114 & 2296 \\
\hline & & & & 71 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within Charged the MRP of buying drugs \% within Age Group in years & \(71.5 \%\)
\(71.4 \%\) & 23.5\%
72.2\% & \(5.0 \%\)
\(74.5 \%\) & \(100.0 \%\)
\(71.8 \%\) \\
\hline & Count & 2299 & 748 & 153 & 3200 \\
\hline & \% within Charged the MRP of buying drugs & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|rr|r|}
\hline & & & & \begin{tabular}{c}
Asymp. Sig. \\
\((2-\) sided \()\)
\end{tabular} \\
\hline Pearson Chi-Square & \(3.400(\mathrm{a})\) & 4 & .493 \\
Likelihood Ratio & 3.970 & 4 & .410 \\
Linear-by-Linear & 1.372 & & 1 & .241 \\
Association & 3200 & & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 13.05 .

\section*{Practice Self-medication * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline Practice Self- & Yes & Count & 813 & 302 & 58 & 1173 \\
\hline medication & & \% within & & & & \\
\hline & & Practice Selfmedication & 69.3\% & 25.7\% & 4.9\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(8.237(\mathrm{a})\) & & 4 \\
\hline Likelihood Ratio & 8.321 & & 4
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 10.76 .
Come across counterfeit medicines * Age Group in years

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{10}{*}{Come across counterfeit medicines} & \multirow[t]{4}{*}{Yes} & Count & 135 & 23 & 5 & 163 \\
\hline & & \% within Come & & & & \\
\hline & & across counterfeit medicines & 82.8\% & 14.1\% & 3.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 5.9\% & 3.1\% & 3.3\% & 5.1\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1853 & 616 & 132 & 2601 \\
\hline & & \% within Come across counterfeit medicines & 71.2\% & 23.7\% & 5.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 80.6\% & 82.4\% & 86.3\% & 81.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 311 & 109 & 16 & 436 \\
\hline & & \% within Come across counterfeit medicines & 71.3\% & 25.0\% & 3.7\% & 100.0\% \\
\hline & & \% within Age Group in years & 13.5\% & 14.6\% & 10.5\% & 13.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Come across counterfeit medicines & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|c|c|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & 12.062 (a) & & 4
\end{tabular}
\begin{tabular}{|l|r|r|r|}
Likelihood Ratio & 13.157 & 4 & .011 \\
Linear-by-Linear & 1.793 & 1 & .181 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 7.79 .

\section*{If victim of expired drugs, complain to officials * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{9}{*}{If victim of expired drugs, complain to officials} & Drug Inspector & Count & 64 & 12 & 3 & 79 \\
\hline & & \% within If victim of expired drugs, complain to officials & 81.0\% & 15.2\% & 3.8\% & 100.0\% \\
\hline & & \(\%\) within Age Group in years & 37.2\% & 25.5\% & 50.0\% & 35.1\% \\
\hline & State Drug Controller & Count & 48 & 16 & 2 & 66 \\
\hline & & \% within If victim of expired drugs, complain to officials & 72.7\% & 24.2\% & 3.0\% & 100.0\% \\
\hline & & \% within Age Group in years & 27.9\% & 34.0\% & 33.3\% & 29.3\% \\
\hline & Others & Count & 60 & 19 & 1 & 80 \\
\hline & & \% within If victim of expired drugs, complain to officials & 75.0\% & 23.8\% & 1.3\% & 100.0\% \\
\hline & & \% within Age Group in years & 34.9\% & 40.4\% & 16.7\% & 35.6\% \\
\hline Total & & Count & 172 & 47 & 6 & 225 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 3.268(a) & 4 & . 514 \\
\hline Likelihood Ratio & 3.468 & 4 & . 483 \\
\hline Linear-by-Linear & . 190 & 1 & . 663 \\
\hline N of Valid Cases & \[
225
\] & & \\
\hline
\end{tabular}
a 3 cells \((33.3 \%)\) have expected count less than 5 . The minimum expected count is 1.76 .

\section*{Satisfaction level of complaints * Age Group in years}
\begin{tabular}{|l|l|l|r|r|r|r|}
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Total} & \multirow{8}{*}{No Response} & \% within Age Group in years & 44.2\% & 42.6\% & 83.3\% & 44.9\% \\
\hline & & Count & 74 & 20 & 1 & 95 \\
\hline & & \% within Satisfaction level of complaints & 77.9\% & 21.1\% & 1.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 43.0\% & 42.6\% & 16.7\% & 42.2\% \\
\hline & & Count & 172 & 47 & 6 & 225 \\
\hline & & \% within & & & & \\
\hline & & Satisfaction level of complaints & 76.4\% & 20.9\% & 2.7\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.928(\mathrm{a})\) & 4 & .416 \\
Likelihood Ratio & 4.573 & 4 & .334 \\
Linear-by-Linear & .205 & & 1
\end{tabular}

3 cells (33.3\%) have expected count less than 5 . The minimum expected count is .77 .

\section*{Insist for bills when buy medicines * Age Group in years}

Crosstab
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & \multicolumn{3}{|c|}{ Age Group in years } & \\
\cline { 4 - 5 } & & & \(18-40\) & \(41-60\) & Above 60 & Total \\
\hline Insist for bills when Yes & Count & 1685 & 529 & 120 & 2334
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.861(\mathrm{a})\) & 4 & .302 \\
Likelihood Ratio & 5.024 & 4 & .285 \\
Linear-by-Linear & .061 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 5.07

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Age Group in years

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \begin{tabular}{r}
\(10.172(\mathrm{a})\) \\
10.353
\end{tabular} & 4 & .038 \\
Likelihood Ratio & 6.825 & & 4
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 6.50 .

\section*{Ready to buy as advised by the Pharmacy * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{11}{*}{Ready to buy as advised by the Pharmacy} & \multirow[t]{5}{*}{Yes} & Count & 962 & 352 & 45 & 1359 \\
\hline & & \% within Ready to & & & & \\
\hline & & buy as advised by the Pharmacy & 70.8\% & 25.9\% & 3.3\% & 100.0\% \\
\hline & & \% within Age & & & & \\
\hline & & Group in years & 41.8\% & 47.1\% & 29.4\% & 42.5\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1200 & 359 & 100 & 1659 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 72.3\% & 21.6\% & 6.0\% & 100.0\% \\
\hline & & Group in years & 52.2\% & 48.0\% & 65.4\% & 51.8\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 137 & 37 & 8 & 182 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 75.3\% & 20.3\% & 4.4\% & 100.0\% \\
\hline & & Group in years & 6.0\% & 4.9\% & 5.2\% & 5.7\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\(\square\)
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(18.725(\mathrm{a})\) & 4 & .001 \\
Likelihood Ratio & 19.017 & 4 & .001 \\
Linear-by-Linear & .005 & 1 & .944 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 8.70

\section*{Bought medicines through online * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{9}{*}{Bought medicines through online} & \multirow[t]{3}{*}{Yes} & Count & 277 & 74 & 24 & 375 \\
\hline & & \% within Bought medicines through online & 73.9\% & 19.7\% & 6.4\% & 100.0\% \\
\hline & & \% within Age Group in years & 12.0\% & 9.9\% & 15.7\% & 11.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1940 & 651 & 122 & 2713 \\
\hline & & \% within Bought medicines through online & 71.5\% & 24.0\% & 4.5\% & 100.0\% \\
\hline & & \% within Age Group in years & 84.4\% & 87.0\% & 79.7\% & 84.8\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 82 & 23 & 7 & 112 \\
\hline & & \% within Bought medicines through online & 73.2\% & 20.5\% & 6.3\% & 100.0\% \\
\hline & & \% within Age Group in years & 3.6\% & 3.1\% & 4.6\% & 3.5\% \\
\hline \multirow[t]{2}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Bought medicines through & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.266(\mathrm{a})\) & 4 & .180 \\
Likelihood Ratio & 6.162 & & 4
\end{tabular}
a 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 5.36

\section*{Look into the dosage level prescribed in the drugs when buy medicine * Age Group in years}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \% within Look into the dosage level prescribed in the drugs when buy medicine \% within Age Group in years & \(70.1 \%\)

37.7\% & 25.6\%
42.2\% & \(4.4 \%\)
\(35.3 \%\) & \(100.0 \%\)

\(38.6 \%\) \\
\hline & No opinion & Count & 114 & 36 & 9 & 159 \\
\hline & & \% within Look into the dosage level prescribed in the drugs when buy medicine & 71.7\% & 22.6\% & 5.7\% & 100.0\% \\
\hline & & \% within Age Group in years & 5.0\% & 4.8\% & 5.9\% & 5.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Look into the dosage level prescribed in the drugs when buy medicine & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(5.949(\mathrm{a})\) & 4 & .203 \\
Likelihood Ratio & 5.906 & & 4
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 7.60

\section*{Aware of Schedule H - drug * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{9}{*}{Aware of Schedule H - drug} & \multirow[t]{3}{*}{Yes} & Count & 267 & 76 & 19 & 362 \\
\hline & & \% within Aware of Schedule H-drug & 73.8\% & 21.0\% & 5.2\% & 100.0\% \\
\hline & & \% within Age Group in years & 11.6\% & 10.2\% & 12.4\% & 11.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1637 & 533 & 115 & 2285 \\
\hline & & \% within Aware of Schedule H-drug & 71.6\% & 23.3\% & 5.0\% & 100.0\% \\
\hline & & \% within Age Group in years & 71.2\% & 71.3\% & 75.2\% & 71.4\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 395 & 139 & 19 & 553 \\
\hline & & \% within Aware of Schedule H-drug & 71.4\% & 25.1\% & 3.4\% & 100.0\% \\
\hline & & \% within Age Group in years & 17.2\% & 18.6\% & 12.4\% & 17.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 2299 & 748 & 153 & 3200 \\
\hline & & \% within Aware of Schedule H-drug & 71.8\% & 23.4\% & 4.8\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|l|r|r|}
\hline & Value & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.386(a)\) & 4 & .356 \\
Likelihood Ratio & 4.617 & 4 & .329
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\begin{tabular}{l}
Linear-by-Linear \\
Association \\
N of Valid Cases
\end{tabular} & .000 \\
& 3200
\end{tabular}\(|\)\begin{tabular}{l}
1 \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 17.31 .
Got Schedule H - drug without medical prescription * Age Group in years

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{12}{*}{Got Schedule H drug without medical prescription} & Yes & Count & 141 & 22 & 5 & 168 \\
\hline & & \% within Got & & & & \\
\hline & & Schedule H-drug without medical & 83.9\% & 13.1\% & 3.0\% & 100.0\% \\
\hline & & prescription & & & & \\
\hline & & \% within Age Group in years & 6.1\% & 2.9\% & 3.3\% & 5.3\% \\
\hline & No & Count & 1436 & 506 & 115 & 2057 \\
\hline & & \begin{tabular}{l}
\% within Got \\
Schedule H-drug
\end{tabular} & 69.8\% & 24.6\% & 5.6\% & 100.0\% \\
\hline & & without medical prescription & 69.8\% & 24.6\% & 5.6\% & 100.0\% \\
\hline & & \% within Age Group in years & 62.5\% & 67.6\% & 75.2\% & 64.3\% \\
\hline & No opinion & Count & 722 & 220 & 33 & 975 \\
\hline & & \% within Got Schedule H-drug without medical prescription & 74.1\% & 22.6\% & 3.4\% & 100.0\% \\
\hline & & \% within Age Group in years & 31.4\% & 29.4\% & 21.6\% & 30.5\% \\
\hline \multicolumn{2}{|l|}{Total} & Count & 2299 & 748 & 153 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\begin{tabular}{l}
\% within Got \\
Schedule H - drug \\
without medical \\
prescription \\
\% within Age Group \\
in years
\end{tabular} & \(71.8 \%\) & \(23.4 \%\) & \(4.8 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(22.389(\mathrm{a})\) & 4 & .000 \\
Likelihood Ratio & 24.137 & 4 & .000 \\
Linear-by-Linear & .469 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 8.03 .

\section*{Affected due to over dosage of drug * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{6}{*}{Affected due to over dosage of drug} & \multirow[t]{4}{*}{Yes} & Count & 322 & 106 & 12 & 440 \\
\hline & & \% within Affected due to over & & & & \\
\hline & & due to over dosage of drug & 73.2\% & 24.1\% & 2.7\% & 100.0\% \\
\hline & & \% within Age Group in years & 14.0\% & 14.2\% & 7.8\% & 13.8\% \\
\hline & No & Count & 1745 & 567 & 131 & 2443 \\
\hline & & \% within Affected due to over & 71.4\% & 23.2\% & 5.4\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(7.746(\mathrm{a})\) & 4 & .101 \\
Likelihood Ratio & 8.638 & & 4
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 15.16 .

\section*{If yes, mode of get the drug * Age Group in years}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & \multirow[t]{3}{*}{On prescription} & Count & 151 & 42 & 3 & 196 \\
\hline & & \(\%\) within If yes, mode of get the drug & 77.0\% & 21.4\% & 1.5\% & 100.0\% \\
\hline & & \% within Age Group in years & 46.9\% & 39.6\% & 25.0\% & 44.5\% \\
\hline & \multirow[t]{3}{*}{Overcounter in pharmacy} & Count & 88 & 28 & 5 & 121 \\
\hline & & \% within If yes, mode of get the drug & 72.7\% & 23.1\% & 4.1\% & 100.0\% \\
\hline & & \% within Age Group in years & 27.3\% & 26.4\% & 41.7\% & 27.5\% \\
\hline & \multirow[t]{3}{*}{Self medication} & Count & 83 & 36 & 4 & 123 \\
\hline & & \% within If yes, mode of get the drug & 67.5\% & 29.3\% & 3.3\% & 100.0\% \\
\hline & & \% within Age Group in years & 25.8\% & 34.0\% & 33.3\% & 28.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 322 & 106 & 12 & 440 \\
\hline & & \% within If yes, mode of get the drug & 73.2\% & 24.1\% & 2.7\% & 100.0\% \\
\hline & & \% within Age Group in years & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.968(\mathrm{a})\) & 4 & .291 \\
Likelihood Ratio & 4.979 & & 4
\end{tabular}
a 2 cells \((22.2 \%)\) have expected count less than 5 . The minimum expected count is 3.30 .

\section*{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Age Group in years}

\begin{tabular}{|l|l|l|l|l|l|}
& & & & & \\
\begin{tabular}{l}
\% within Aware of \\
the existing laws for \\
protecting the \\
Consumer in case \\
of counterfeit \\
medicines \\
\% within Age Group \\
in years
\end{tabular} & \(71.8 \%\) & \(23.4 \%\) & & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(10.361(\mathrm{a})\) & 4 & .035 \\
Likelihood Ratio & 10.364 & & 4
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.10 .

\section*{Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Age Group in years}

Crosstab
\begin{tabular}{|l|l|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{ Age Group in years } & \\
\cline { 3 - 6 } & & & \(18-40\) & \(41-60\) & Above 60 \\
Total \\
\hline Aware of Consumer Yes & Count & 1431 & 453 & 94 & 1978 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(5.678(\mathrm{a})\) & 4 & .225 \\
Likelihood Ratio & 6.787 & 4 & .148 \\
Linear-by-Linear & .003 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 10.23 .

\section*{If yes, filled a case in the Consumer Court * Age Group in years}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{3}{|c|}{Age Group in years} & \multirow[b]{2}{*}{Total} \\
\hline & & & 18-40 & 41-60 & Above 60 & \\
\hline \multirow[t]{7}{*}{If yes, filled a case in the Consumer Court} & Yes & Count & 52 & 17 & 3 & 72 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 72.2\% & 23.6\% & 4.2\% & 100.0\% \\
\hline & & \% within Age Group in years & 3.6\% & 3.8\% & 3.2\% & 3.6\% \\
\hline & No & Count & 1317 & 421 & 90 & 1828 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 72.0\% & 23.0\% & 4.9\% & 100.0\% \\
\hline & & \% within Age Group in years & 92.0\% & 92.9\% & 95.7\% & 92.4\% \\
\hline & No opinion & Count & 62 & 15 & 1 & 78 \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|}
& \begin{tabular}{l}
\% within If yes, \\
filled a case in the \\
Consumer Court \\
\% within Age
\end{tabular} & \(79.5 \%\) & \(19.2 \%\) & \(1.3 \%\) & \(100.0 \%\) \\
Total & \begin{tabular}{l}
Group in years \\
Count \\
\% within If yes, \\
filled a case in the \\
Consumer Court \\
\% within Age \\
Group in years
\end{tabular} & \(4.3 \%\) & 1431 & 453 & \(1.1 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|rr|r|}
\hline & Value & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.202(\mathrm{a})\) & & 4 & .525 \\
Likelihood Ratio & 4.029 & & 4 & .402 \\
Linear-by-Linear & 1.339 & & 1 & .247 \\
Association & 1978 & & & \\
N of Valid Cases & & & &
\end{tabular}
a 2 cells (22.2\%) have expected count less than 5 . The minimum expected count is 3.42

If files case, Consumer Court able to redress grievance * Age Group in years

Crosstab
\begin{tabular}{|l|l|l|l|l|r|c|}
\hline & & \multicolumn{4}{|c|}{ Age Group in years } & \\
\cline { 3 - 6 } & & & \(18-40\) & \(41-60\) & Above 60 & Total \\
\hline If files case, & Yes & Count & 37 & 13 & 1 & 51 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(8.871(\mathrm{a})\) & 4 & .064 \\
Likelihood Ratio & 6.068 & 4 & .194 \\
Linear-by-Linear & 1.078 & & 1
\end{tabular}
\(|\)\begin{tabular}{l}
N of Valid Cases \\
a 5 cells \((55.6 \%)\) have expected count less than 5 . The minimum expected count is .38.
\end{tabular}

\section*{Crosstabs}

\section*{Age Group in years * Marital Status}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{Age Group in years} & \multirow[t]{3}{*}{18-40} & Count & 1061 & 1238 & 2299 \\
\hline & & \% within Age Group in years & 46.2\% & 53.8\% & 100.0\% \\
\hline & & \% within Marital Status & 55.3\% & 96.6\% & 71.8\% \\
\hline & \multirow[t]{3}{*}{41-60} & Count & 712 & 36 & 748 \\
\hline & & \% within Age Group in years & 95.2\% & 4.8\% & 100.0\% \\
\hline & & \% within Marital Status & 37.1\% & 2.8\% & 23.4\% \\
\hline & \multirow[t]{6}{*}{Above 60} & Count & 146 & 7 & 153 \\
\hline & & \% within Age Group in years & 95.4\% & 4.6\% & 100.0\% \\
\hline & & \% within Marital Status & 7.6\% & .5\% & 4.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Age Group in years & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(649.454(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 789.098 & 2 & .000 \\
Linear-by-Linear & 568.749 & & 1
\end{tabular}
Association
N of Valid Cases

a 0 cells (.0\%) have expected count less than 5. The minimum expect
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 61.25.
Gender * Marital Status
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{7}{*}{Gender} & \multirow[t]{3}{*}{Male} & Count & 1021 & 717 & 1738 \\
\hline & & \% within Gender & 58.7\% & 41.3\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 53.2\% & 56.0\% & 54.3\% \\
\hline & \multirow[t]{6}{*}{Female} & Count & 898 & 564 & 1462 \\
\hline & & \% within Gender & 61.4\% & 38.6\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 46.8\% & 44.0\% & 45.7\% \\
\hline & & Count & 1919 & 1281 & 3200 \\
\hline \multirow{2}{*}{Total} & & \% within Gender & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within
Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\(\left.\)\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular}
\end{tabular} \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \right\rvert\,

Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 585.26.

\section*{Monthly Income * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{Monthly Income} & \multirow[t]{3}{*}{Upto 10000} & Count & 793 & 579 & 1372 \\
\hline & & \% within Monthly Income & 57.8\% & 42.2\% & 100.0\% \\
\hline & & \% within Marital Status & 41.3\% & 45.2\% & 42.9\% \\
\hline & \multirow[t]{3}{*}{10001-20000} & Count & 525 & 296 & 821 \\
\hline & & \% within Monthly Income & 63.9\% & 36.1\% & 100.0\% \\
\hline & & \% within Marital Status & 27.4\% & 23.1\% & 25.7\% \\
\hline & \multirow[t]{3}{*}{20001-30000} & Count & 381 & 296 & 677 \\
\hline & & \% within Monthly Income & 56.3\% & 43.7\% & 100.0\% \\
\hline & & \% within Marital Status & 19.9\% & 23.1\% & 21.2\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{Above 30000} & Count & 220 & 110 & 330 \\
\hline & & \% within Monthly Income & 66.7\% & 33.3\% & 100.0\% \\
\hline & & \% within Marital Status & 11.5\% & 8.6\% & 10.3\% \\
\hline & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Monthly Income & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(18.111(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 18.266 & 3 & .000 \\
Linear-by-Linear & 2.967 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 132.10
Amount spent family on Health and Medicines per month * Marital Status

Crosstab
\begin{tabular}{|l|l|c|c|c|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \\
\cline { 3 - 4 } & & Married & Single & Total \\
\hline \begin{tabular}{l}
Amount spent \\
family on Health \\
and Medicines per \\
month
\end{tabular} & \begin{tabular}{l}
Count \\
\% within Amount \\
spent family on \\
Health and \\
Medicines per \\
month
\end{tabular} & 870 & 669 & 1539 \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1001-2000 & \% within Marital Status Count & \(45.3 \%\)
553 & \(52.2 \%\)
309 & \[
\begin{array}{r}
48.1 \% \\
862
\end{array}
\] \\
\hline & & \% within Amount spent family on Health and Medicines per month & 64.2\% & 35.8\% & 100.0\% \\
\hline & & \% within Marital Status & 28.8\% & 24.1\% & 26.9\% \\
\hline & 2001-3000 & Count & 263 & 165 & 428 \\
\hline & & \% within Amount spent family on Health and Medicines per month & 61.4\% & 38.6\% & 100.0\% \\
\hline & & \% within Marital Status & 13.7\% & 12.9\% & 13.4\% \\
\hline & 3001-5000 & Count & 132 & 83 & 215 \\
\hline & & \% within Amount spent family on Health and Medicines per month & 61.4\% & 38.6\% & 100.0\% \\
\hline & & \% within Marital Status & 6.9\% & 6.5\% & 6.7\% \\
\hline & Above 5000 & Count & 101 & 55 & 156 \\
\hline & & \begin{tabular}{l}
\% within Amount \\
spent family on \\
Health and \\
Medicines per month
\end{tabular} & 64.7\% & 35.3\% & 100.0\% \\
\hline & & \% within Marital Status & 5.3\% & 4.3\% & 4.9\% \\
\hline Total & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Amount spent family on Health and Medicines per month & 60.0\% & 40.0\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 15.921(a) & 4 & . 003 \\
\hline Likelihood Ratio & 15.963 & 4 & . 003 \\
\hline Linear-by-Linear & 7.601 & 1 & . 006 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 62.45 .

\section*{Educational Qualification * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{12}{*}{Educational Qualification} & \multirow[t]{5}{*}{Graduate} & Count & 771 & 857 & 1628 \\
\hline & & \% within & & & \\
\hline & & Educational & 47.4\% & 52.6\% & 100.0\% \\
\hline & & Qualification & & & \\
\hline & & \% within Marital Status & 40.2\% & 66.9\% & 50.9\% \\
\hline & \multirow[t]{6}{*}{HSc} & Count & 331 & 245 & 576 \\
\hline & & \% within & & & \\
\hline & & Educational & 57.5\% & 42.5\% & 100.0\% \\
\hline & & Qualification & & & \\
\hline & & \% within Marital & 17.2\% & 19.1\% & 18.0\% \\
\hline & & Status & & & \\
\hline & SSLC & Count & 243 & 105 & 348 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(344.399(a)\) & 3 & .000 \\
Likelihood Ratio & 383.609 & 3 & .000 \\
Linear-by-Linear & 339.670 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 139.31 .

\section*{Location * Marital Status}

\section*{Crosstab}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Married & Single & \\
\hline \multirow[t]{8}{*}{Location} & \multirow[t]{4}{*}{Rural} & Count & 751 & 504 & 1255 \\
\hline & & \% within Location & 59.8\% & 40.2\% & 100.0\% \\
\hline & & \% within & 39.1\% & 39.3\% & 39.2\% \\
\hline & & Marital Status & & & \\
\hline & \multirow[t]{4}{*}{Urban} & Count & 1168 & 777 & 1945 \\
\hline & & \% within Location & 60.1\% & 39.9\% & 100.0\% \\
\hline & & \% within & & & \\
\hline & & Marital Status & 60.9\% & 60.7\% & 60.8\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within & 60.0\% & 40.0\% & \\
\hline & & Location & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(.014(\mathrm{~b})\) & 1 & .905 & & \\
Continuity & .007 & 1 & .935 & & \\
Correction(a) & .014 & & 1 & .905 & \\
Likelihood Ratio & & & & & \\
Fisher's Exact Test & .014 & 1 & .905 & & .467 \\
Linear-by-Linear & 3200 & & & & \\
Association & & & & \\
N of Valid Cases & & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells (\(.0 \%\)) have expected count less than 5 . The minimum expected count is 502.39 .

\section*{Buy medicines * Marital Status}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{12}{*}{Buy medicines} & \multirow[t]{3}{*}{Doctor's Prescription} & Count & 1669 & 1116 & 2785 \\
\hline & & \% within Buy medicines & 59.9\% & 40.1\% & 100.0\% \\
\hline & & \% within Marital Status & 87.0\% & 87.1\% & 87.0\% \\
\hline & \multirow[t]{3}{*}{Advice of Family/ Friends} & Count & 58 & 52 & 110 \\
\hline & & \% within Buy medicines & 52.7\% & 47.3\% & 100.0\% \\
\hline & & \% within Marital Status & 3.0\% & 4.1\% & 3.4\% \\
\hline & \multirow[t]{3}{*}{Suggestion of the Pharmacist} & Count & 119 & 72 & 191 \\
\hline & & \% within Buy medicines & 62.3\% & 37.7\% & 100.0\% \\
\hline & & \% within Marital Status & 6.2\% & 5.6\% & 6.0\% \\
\hline & \multirow[t]{3}{*}{Others} & Count & 73 & 41 & 114 \\
\hline & & \% within Buy medicines & 64.0\% & 36.0\% & 100.0\% \\
\hline & & \% within Marital Status & 3.8\% & 3.2\% & 3.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Buy medicines & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|l|r|r|}
\hline & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \begin{tabular}{rl}
Value
\end{tabular} & df & \\
Likelihood Ratio & 3.598 & & 3
\end{tabular}
\begin{tabular}{|l|r|r|}
\begin{tabular}{l}
Linear-by-Linear \\
Association \\
N of Valid Cases
\end{tabular} & .547 & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 44.03 .

\section*{Family members go to Clinic normally * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{8}{*}{Family members go to Clinic normally} & \multirow[t]{5}{*}{Govt Hospital / Dispensary} & Count & 805 & 461 & 1266 \\
\hline & & \% within Family & & & \\
\hline & & members go to Clinic & 63.6\% & 36.4\% & 100.0\% \\
\hline & & normally & & & \\
\hline & & \begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & 41.9\% & 36.0\% & 39.6\% \\
\hline & \multirow[t]{3}{*}{Private Clinic} & Count & 1114 & 820 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 57.6\% & 42.4\% & 100.0\% \\
\hline & & \% within Marital Status & 58.1\% & 64.0\% & 60.4\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
\((2\)-sided \()\)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|}
\hline Pearson Chi-Square & \(11.418(\mathrm{~b})\) & 1 & .001 & & \\
Continuity & 11.170 & 1 & .001 & & \\
Correction(a) & 11.467 & 1 & .001 & & \\
Likelihood Ratio & & & & .001 & .000 \\
Fisher's Exact Test & 11.414 & 1 & .001 & & \\
Linear-by-Linear & 3200 & & & & \\
Association & & & & \\
N of Valid Cases & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 506.80 .

\section*{Reason for go to a Private Doctor / Clinic * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 665 & 435 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 60.5\% & 39.5\% & 100.0\% \\
\hline & & \% within Marital Status & 59.7\% & 53.0\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 260 & 244 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 51.6\% & 48.4\% & 100.0\% \\
\hline & & \% within Marital Status & 23.3\% & 29.8\% & 26.1\% \\
\hline & \multirow[t]{3}{*}{No Govt.Hospital nearby} & Count & 189 & 141 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 57.3\% & 42.7\% & 100.0\% \\
\hline & & \% within Marital Status & 17.0\% & 17.2\% & 17.1\% \\
\hline Total & & Count & 1114 & 820 & 1934 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(11.145(\mathrm{a})\) & 2 & .004 \\
Likelihood Ratio & 11.096 & 2 & .004 \\
Linear-by-Linear & 3.842 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 139.92 .

\section*{Heard of Generic Drugs * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{6}{*}{Heard of Generic Drugs} & Yes & Count & 425 & 412 & 837 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic Drugs
\end{tabular} & 50.8\% & 49.2\% & 100.0\% \\
\hline & & \% within Marital Status & 22.1\% & 32.2\% & 26.2\% \\
\hline & No & Count & 1280 & 693 & 1973 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic \\
Drugs
\end{tabular} & 64.9\% & 35.1\% & 100.0\% \\
\hline & & \% within Marital Status & 66.7\% & 54.1\% & 61.7\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{No opinion} & Count & 214 & 176 & 390 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic \\
Drugs
\end{tabular} & 54.9\% & 45.1\% & 100.0\% \\
\hline & & \% within Marital Status & 11.2\% & 13.7\% & 12.2\% \\
\hline & & Count & 1919 & 1281 & 3200 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic \\
Drugs
\end{tabular} & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(53.471(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 53.167 & 2 & .000 \\
Linear-by-Linear & 11.643 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 156.12
Chronic problems for which family members take medicines regularly * Marital Status
Crosstab
\begin{tabular}{|l|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \\
\cline { 3 - 4 } & & & Married & Single \\
Total \\
\hline Chronic problems for & BP/Hypertension & Count & 286 & 67
\end{tabular}
which family members
take medicines
regularly
\begin{tabular}{|c|c|c|c|c|}
\hline & \% within Chronic problems for which family members take medicines regularly & 81.0\% & 19.0\% & 100.0\% \\
\hline & \% within Marital Status & 14.9\% & 5.2\% & 11.0\% \\
\hline \multirow[t]{2}{*}{Heart Problems} & \begin{tabular}{l}
Count \\
\% within Chronic problems for which family members take medicines regularly
\end{tabular} & 77
\(75.5 \%\) & 25 & 102
\(100.0 \%\) \\
\hline & \% within Marital Status & 4.0\% & 2.0\% & 3.2\% \\
\hline \multirow[t]{3}{*}{Diabetes} & Count & 305 & 40 & 345 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 88.4\% & 11.6\% & 100.0\% \\
\hline & \% within Marital Status & 15.9\% & 3.1\% & 10.8\% \\
\hline \multirow[t]{3}{*}{Stomach Ailments} & Count & 149 & 127 & 276 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 54.0\% & 46.0\% & 100.0\% \\
\hline & \% within Marital Status & 7.8\% & 9.9\% & 8.6\% \\
\hline \multirow[t]{3}{*}{Arthritis} & Count & 26 & 8 & 34 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 76.5\% & 23.5\% & 100.0\% \\
\hline & \% within Marital Status & 1.4\% & .6\% & 1.1\% \\
\hline Others & Count & 1076 & 1014 & 2090 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within Chronic problems for which family members take medicines regularly & 51.5\% & 48.5\% & 100.0\% \\
\hline & \% within Marital Status Count & \(56.1 \%\)
1919 & \(79.2 \%\)
1281 & \(65.3 \%\)
3200 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 60.0\% & 40.0\% & 100.0\% \\
\hline & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(262.274(\mathrm{a})\) & 5 & .000 \\
Likelihood Ratio & 290.386 & 5 & .000 \\
Linear-by-Linear & 201.036 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 13.61 .

\section*{Examine the expiry date when buy medicines * Marital Status}

Crosstab
\begin{tabular}{|ll|l|r|r|c|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \multirow{2}{*}{} \\
\cline { 3 - 4 } & & Married & Single & Total \\
\hline Examine the expiry & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{date when buy medicines} & & \% within Examine the expiry date when buy medicines & 57.7\% & 42.3\% & 100.0\% \\
\hline & No & \% within Marital Status Count & \(77.2 \%\)
382 & \(84.9 \%\)
168 & \(80.3 \%\)
550 \\
\hline & & \% within Examine the expiry date when buy medicines & 69.5\% & 30.5\% & 100.0\% \\
\hline & & \% within Marital Status & 19.9\% & 13.1\% & 17.2\% \\
\hline & No opinion & Count & 55 & 26 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 67.9\% & 32.1\% & 100.0\% \\
\hline & & \% within Marital Status & 2.9\% & 2.0\% & 2.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 28.306(a) & 2 & . 000 \\
\hline Likelihood Ratio & 29.039 & 2 & . 000 \\
\hline Linear-by-Linear & 24.604 & 1 & . 000 \\
\hline Association & & & . 000 \\
\hline N of Valid Cases & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 32.43 .

\section*{Victim of expired drugs * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{Victim of expired drugs} & \multirow[t]{3}{*}{Yes} & Count & 118 & 107 & 225 \\
\hline & & \% within Victim of expired drugs & 52.4\% & 47.6\% & 100.0\% \\
\hline & & \% within Marital Status & 6.1\% & 8.4\% & 7.0\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1656 & 1094 & 2750 \\
\hline & & \% within Victim of expired drugs & 60.2\% & 39.8\% & 100.0\% \\
\hline & & \% within Marital Status & 86.3\% & 85.4\% & 85.9\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 145 & 80 & 225 \\
\hline & & \% within Victim of expired drugs & 64.4\% & 35.6\% & 100.0\% \\
\hline & & \% within Marital Status & 7.6\% & 6.2\% & 7.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Victim of expired drugs & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|c|c|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(7.255(\mathrm{a})\) & 2 & .027 \\
Likelihood Ratio & 7.194 & 2 & .027 \\
Linear-by-Linear & 6.746 & 1 & .009 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 90.07 .
Check the MRP (Maximum Retail Price) before buying drugs * Marital Status

Crosstab

\begin{tabular}{|ll|l|l|}
\hline \begin{tabular}{l}
\% within Check the \\
MRP (Maximum \\
Retail Price) before \\
buying drugs \\
\% within Marital \\
Status
\end{tabular} & \(60.0 \%\) & \(40.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(.562(\mathrm{a})\) & 2 & .755 \\
Likelihood Ratio & .563 & 2 & .755 \\
Linear-by-Linear & .473 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 52.04 .

\section*{Charged the MRP of buying drugs * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{7}{*}{Charged the MRP of buying drugs} & \multirow[t]{5}{*}{Above MRP} & Count & 156 & 117 & 273 \\
\hline & & \% within Charged & & & \\
\hline & & & 57.1\% & 42.9\% & 100.0\% \\
\hline & & buying drugs & & & \\
\hline & & \% within Marital Status & 8.1\% & 9.1\% & 8.5\% \\
\hline & \multirow[t]{2}{*}{Below MRP} & Count & 368 & 263 & 631 \\
\hline & & \% within Charged the MRP of buying drugs & 58.3\% & 41.7\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{7}{*}{Total} & \multirow[t]{7}{*}{At MRP} & \% within Marital Status Count & \(19.2 \%\)
1395 & \(20.5 \%\)
901 & 19.7\% \\
\hline & & \% within Charged & 1395 & 1 & 2296 \\
\hline & & \% within Charged the MRP of buying drugs & 60.8\% & 39.2\% & 100.0\% \\
\hline & & \% within Marital Status & 72.7\% & 70.3\% & 71.8\% \\
\hline & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Charged the MRP of buying drugs & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(2.218(\mathrm{a})\) & 2 & .330 \\
Likelihood Ratio & 2.210 & 2 & .331 \\
Linear-by-Linear & 2.154 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 109.29.

\section*{Practice Self-medication * Marital Status}

\section*{Crosstab}
\begin{tabular}{|l|l|r|r|c|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \multirow{2}{*}{} \\
\cline { 3 - 4 } & & Married & Single & Total \\
\hline Practice Self- Yes & Count & 696 & 477 & 1173
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.562(\mathrm{a})\) & 2 & .458 \\
Likelihood Ratio & 1.556 & 2 & .459 \\
Linear-by-Linear & .001 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 90.07 .
Come across counterfeit medicines * Marital Status

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{12}{*}{Come across counterfeit medicines} & \multirow[t]{6}{*}{Yes} & Count & \multirow[t]{2}{*}{77} & 86 & \multirow[t]{2}{*}{163} \\
\hline & & \% within Come & & & \\
\hline & & across counterfeit & 47.2\% & 52.8\% & 100.0\% \\
\hline & & medicines & & & \\
\hline & & \% within Marital & 4.0\% & 6.7\% & 5.1\% \\
\hline & & Status & 4.0\% & 6.7\% & 5.1\% \\
\hline & No & Count & 1588 & 1013 & 2601 \\
\hline & & \% within Come across counterfeit medicines & 61.1\% & 38.9\% & 100.0\% \\
\hline & & \% within Marital Status & 82.8\% & 79.1\% & 81.3\% \\
\hline & No opinion & Count & 254 & 182 & 436 \\
\hline & & \% within Come across counterfeit medicines & 58.3\% & 41.7\% & 100.0\% \\
\hline & & \% within Marital Status & 13.2\% & 14.2\% & 13.6\% \\
\hline Total & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Come across counterfeit medicines & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(12.809(\mathrm{a})\) & 2 & .002 \\
Likelihood Ratio & 12.555 & 2 & .002 \\
Linear-by-Linear & 1.277 & 1 & .259 \\
Association & & &
\end{tabular}

If victim of expired drugs, complain to officials * Marital Status
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{If victim of expired drugs, complain to officials} & \multirow[t]{3}{*}{Drug Inspector} & Count & 40 & 39 & 79 \\
\hline & & \% within If victim of expired drugs, complain to officials & 50.6\% & 49.4\% & 100.0\% \\
\hline & & \% within Marital Status & 33.9\% & 36.4\% & 35.1\% \\
\hline & \multirow[t]{3}{*}{State Drug Controller} & Count & 36 & 30 & 66 \\
\hline & & \% within If victim of expired drugs, complain to officials & 54.5\% & 45.5\% & 100.0\% \\
\hline & & \% within Marital Status & 30.5\% & 28.0\% & 29.3\% \\
\hline & \multirow[t]{3}{*}{Others} & Count & 42 & 38 & 80 \\
\hline & & \% within If victim of expired drugs, complain to officials & 52.5\% & 47.5\% & 100.0\% \\
\hline & & \% within Marital Status & 35.6\% & 35.5\% & 35.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 118 & 107 & 225 \\
\hline & & \% within If victim of expired drugs, complain to officials & 52.4\% & 47.6\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
& \\
Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(.221(\mathrm{a})\) & 2 & .895 \\
Likelihood Ratio & .221 & 2 & .895 \\
Linear-by-Linear & .055 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 31.39 .

\section*{Satisfaction level of complaints * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{8}{*}{Satisfaction level of complaints} & Satisfactory & Count & 20 & 9 & 29 \\
\hline & & \% within Satisfaction level of complaints & 69.0\% & 31.0\% & 100.0\% \\
\hline & & \% within Marital Status & 16.9\% & 8.4\% & 12.9\% \\
\hline & Not Satisfactory & Count & 52 & 49 & 101 \\
\hline & & \% within Satisfaction level of complaints & 51.5\% & 48.5\% & 100.0\% \\
\hline & No Response & \% within Marital Status & 44.1\% & 45.8\% & 44.9\% \\
\hline & & \% within Satisfaction level of complaints & 48.4\% & 51.6\% & 100.0\% \\
\hline & & \% within Marital Status & 39.0\% & 45.8\% & 42.2\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & Count & 118 & 107 & 225 \\
\hline & \% within Satisfaction level of complaints & 52.4\% & 47.6\% & 100.0\% \\
\hline & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.828(\mathrm{a})\) & 2 & .148 \\
Likelihood Ratio & 3.925 & 2 & .141 \\
Linear-by-Linear & 2.830 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 13.79.

\section*{Insist for bills when buy medicines * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{7}{*}{Insist for bills when buy medicines} & \multirow[t]{5}{*}{Yes} & Count & 1358 & 976 & 2334 \\
\hline & & \% within Insist for & & & \\
\hline & & bills when buy medicines & 58.2\% & 41.8\% & 100.0\% \\
\hline & & \% within Marital & & & \\
\hline & & Status & 70.8\% & 76.2\% & 72.9\% \\
\hline & \multirow[t]{2}{*}{No} & Count & 497 & 263 & 760 \\
\hline & & \% within Insist for bills when buy medicines & 65.4\% & 34.6\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|}
& \begin{tabular}{l}
\% within Marital \\
Status \\
Count \\
\% within Insist for \\
bills when buy \\
medicines \\
\% within Marital
\end{tabular} & \(25.9 \%\) & \(20.5 \%\) & \(23.8 \%\) \\
Total & \begin{tabular}{l}
Status \\
Count
\end{tabular} & \(30.4 \%\) & \(39.6 \%\) & \(100.0 \%\) \\
& \begin{tabular}{l}
\% within Insist for \\
bills when buy
\end{tabular} & 106 & \(3.3 \%\) & \(3.3 \%\) \\
\begin{tabular}{l}
medicines \\
\% within Marital \\
Status
\end{tabular} & \(60.0 \%\) & \(40.0 \%\) & \(100.0 \%\) & 3200 \\
& & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(12.427(\mathrm{a})\) & 2 & .002 \\
Likelihood Ratio & 12.576 & 2 & .002 \\
Linear-by-Linear & 8.306 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 42.43 .
When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Marital Status

Crosstab
\begin{tabular}{|l|l|l|l|l|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \multirow{3}{*}{} \\
\cline { 3 - 4 } & & Married & Single & Total \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|}
\\
\begin{tabular}{l}
\% within When the \\
particular brand of \\
medicine looking for \\
is not available, \\
asked by the \\
Pharmacies to buy \\
alternative company \\
drugs having the \\
same components \\
\% within Marital \\
Status
\end{tabular} & \(60.0 \%\) & \(40.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig.
(2-sided) \\
\hline Pearson Chi-Square & 2.260(a) & 2 & . 323 \\
\hline Likelihood Ratio & 2.255 & 2 & . 324 \\
\hline Linear-by-Linear & . 100 & 1 & . 752 \\
\hline Association & & & \\
\hline N of Valid Cases & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 54.44 .

\section*{Ready to buy as advised by the Pharmacy * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{4}{*}{Ready to buy as advised by the Pharmacy} & \multirow[t]{4}{*}{Yes} & Count & 798 & 561 & 1359 \\
\hline & & \% within Ready to & & & \\
\hline & & buy as advised by the Pharmacy & 58.7\% & 41.3\% & 100.0\% \\
\hline & & \% within Marital & 41.6\% & 43.8\% & 42.5\% \\
\hline
\end{tabular}
\begin{tabular}{|cc|c|r|r|}
& No & \begin{tabular}{l}
Status \\
Count \\
\% within Ready to \\
buy as advised by \\
the Pharmacy \\
\% within Marital \\
Status \\
Count \\
\% within Ready to \\
buy as advised by \\
the Pharmacy \\
\% within Marital
\end{tabular} & \(61.5 \%\) & 539
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
\hline Pealue & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Likelihood Ratio & \(3.985(\mathrm{a})\) & 2 & .136 \\
Linear-by-Linear & 3.973 & 2 & .137 \\
Association & .293 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 72.86 .

\section*{Bought medicines through online * Marital Status}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{Bought medicines through online} & \multirow[t]{3}{*}{Yes} & Count & 210 & 165 & \multirow[t]{2}{*}{\[
\begin{array}{r}
375 \\
100.0 \%
\end{array}
\]} \\
\hline & & \% within Bought medicines through online & 56.0\% & 44.0\% & \\
\hline & & \% within Marital Status & 10.9\% & 12.9\% & 11.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1642 & 1071 & 2713 \\
\hline & & \% within Bought medicines through online & 60.5\% & 39.5\% & 100.0\% \\
\hline & & \% within Marital Status & 85.6\% & 83.6\% & 84.8\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 67 & 45 & 112 \\
\hline & & \% within Bought medicines through online & 59.8\% & 40.2\% & 100.0\% \\
\hline & & \% within Marital Status & 3.5\% & 3.5\% & 3.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Bought medicines through online & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
Value & df
\end{tabular}} & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(2.809(\mathrm{a})\) & 2 & .245 \\
Likelihood Ratio & 2.786 & 2 & .248 \\
Linear-by-Linear & 1.938 & & 1
\end{tabular}

\section*{Look into the dosage level prescribed in the drugs when buy medicine * Marital Status}

Crosstab

\begin{tabular}{|l|l|l|l|}
medicine & & & \\
\begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(7.484(\mathrm{a})\) & 2 & .024 \\
Likelihood Ratio & 7.511 & 2 & .023 \\
Linear-by-Linear & 2.940 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 63.65 .

\section*{Aware of Schedule H - drug * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{4}{*}{Aware of Schedule H - drug} & Yes & Count & 200 & 162 & 362 \\
\hline & & \% within Aware of Schedule H - drug & 55.2\% & 44.8\% & 100.0\% \\
\hline & No & \% within Marital Status & 10.4\% & 12.6\% & 11.3\% \\
\hline & & \% within Aware of Schedule H - drug & 1395
\(61.1 \%\) & 890
\(38.9 \%\) & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Total} & \multirow[t]{5}{*}{No opinion} & \% within Marital Status Count & \(72.7 \%\)
324 & \(69.5 \%\)
229 & \[
\begin{array}{r}
71.4 \% \\
553
\end{array}
\] \\
\hline & & \% within Aware of Schedule H-drug & 58.6\% & 41.4\% & 100.0\% \\
\hline & & \% within Marital Status Count & \(16.9 \%\)
1919 & \(17.9 \%\)
1281 & \(17.3 \%\)
3200 \\
\hline & & \% within Aware of Schedule H - drug & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(4.911(\mathrm{a})\) & 2 & .086 \\
Likelihood Ratio & 4.875 & 2 & .087 \\
Linear-by-Linear & .412 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 144.91 .

\section*{Got Schedule H - drug without medical prescription * Marital Status}

Crosstab
\begin{tabular}{|ll|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Marital Status } & \\
& & & Married & \multicolumn{1}{c|}{ Single } & Total \\
\hline Got Schedule H- Yes & Count & 70 & 98 & 168 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(31.022(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 30.431 & 2 & .000 \\
Linear-by-Linear & .363 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 67.25 .

\section*{Affected due to over dosage of drug * Marital Status}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Crosstab} \\
\hline & & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{10}{*}{Affected due to over dosage of drug} & \multirow[t]{4}{*}{Yes} & Count & 241 & 199 & 440 \\
\hline & & \% within Affected due to over & \multirow[t]{2}{*}{54.8\%} & \multirow[t]{2}{*}{45.2\%} & \multirow[t]{2}{*}{100.0\%} \\
\hline & & dosage of drug & & & \\
\hline & & \% within Marital & 12.6\% & 15.5\% & 13.8\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1487 & 956 & 2443 \\
\hline & & \% within Affected due to over dosage of drug & 60.9\% & 39.1\% & 100.0\% \\
\hline & & \% within Marital Status & 77.5\% & 74.6\% & 76.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 191 & 126 & 317 \\
\hline & & \% within Affected due to over dosage of drug & 60.3\% & 39.7\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & 10.0\% & 9.8\% & 9.9\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1919 & 1281 & 3200 \\
\hline & & \% within Affected due to over dosage of drug & 60.0\% & 40.0\% & 100.0\% \\
\hline & & \% within Marital Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \begin{tabular}{rl}
\(5.782(a)\) & 2 \\
Likelihood Ratio & 5.723 \\
Linear-by-Linear & 3.125 \\
Association & \\
N of Valid Cases & 3200
\end{tabular} & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 126.90.

\section*{If yes, mode of get the drug * Marital Status}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & \multirow[t]{3}{*}{On prescription} & Count & 102 & 94 & 196 \\
\hline & & \% within If yes, mode of get the drug & 52.0\% & 48.0\% & 100.0\% \\
\hline & & \% within Marital Status & 42.3\% & 47.2\% & 44.5\% \\
\hline & \multirow[t]{3}{*}{Overcounter in pharmacy} & Count & 65 & 56 & 121 \\
\hline & & \% within If yes, mode of get the drug & 53.7\% & 46.3\% & 100.0\% \\
\hline & & \% within Marital Status & 27.0\% & 28.1\% & 27.5\% \\
\hline & \multirow[t]{3}{*}{Self medication} & Count & 74 & 49 & 123 \\
\hline & & \% within If yes, mode of get the drug & 60.2\% & 39.8\% & 100.0\% \\
\hline & & \% within Marital Status & 30.7\% & 24.6\% & 28.0\% \\
\hline \multirow[t]{2}{*}{Total} & & Count & 241 & 199 & 440 \\
\hline & & \% within If yes, mode of get the drug & 54.8\% & 45.2\% & 100.0\% \\
\hline
\end{tabular}

131
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within Marital \\
Status
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(2.087(\mathrm{a})\) & 2 & .352 \\
Likelihood Ratio & 2.098 & 2 & .350 \\
Linear-by-Linear & 1.885 & 1 & .170 \\
Association & 440 & & \\
N of Valid Cases & & & \\
a 0 cells (.0\%) have expected count less than 5. The minimum expect
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 54.73.
Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Marital Status

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(14.673(\mathrm{a})\) & 2 & .001 \\
Likelihood Ratio & 14.722 & & 2
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 118.09 .

Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Marital Status

Crosstab

\begin{tabular}{|ll|l|l|l|}
Total & \begin{tabular}{l}
Status \\
Count \\
\% within Aware of \\
Consumer Courts for \\
redressal of \\
grievances of the \\
consumers relating \\
to mishandling in \\
selling drugs \\
\% within Marital \\
Status
\end{tabular} & 1919 & 1281 & 3200 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(33.301(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 33.698 & 2 & .000 \\
Linear-by-Linear & 21.228 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 85.67 .

\section*{If yes, filled a case in the Consumer Court * Marital Status}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.658(\mathrm{a})\) & 2 & .436 \\
Likelihood Ratio & 1.647 & 2 & .439 \\
Linear-by-Linear & .152 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 31.56 .

If files case, Consumer Court able to redress grievance * Marital Status

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{Marital Status} & \multirow[b]{2}{*}{Total} \\
\hline & & & Married & Single & \\
\hline \multirow[t]{18}{*}{If files case, Consumer Court able to redress grievance} & \multirow[t]{6}{*}{Yes} & Count & \multirow[t]{2}{*}{23} & \multirow[t]{2}{*}{28} & \multirow[t]{2}{*}{51} \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 45.1\% & 54.9\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Marital & 60.5\% & 82.4\% & 70.8\% \\
\hline & & Status & & & \\
\hline & No & Count & 10 & 2 & 12 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 83.3\% & 16.7\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Marital & 26.3\% & 5.9\% & 16.7\% \\
\hline & & Status & & & \\
\hline & No opinion & Count & 5 & 4 & 9 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 55.6\% & 44.4\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Marital & & & \\
\hline & & Status & 13.2\% & 11.8\% & 12.5\% \\
\hline Total & & Count & 38 & 34 & 72 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 52.8\% & 47.2\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Marital & & & \\
\hline & & Status & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(5.730(\mathrm{a})\) & & 2 \\
Likelihood Ratio & 6.202 & & .057 \\
Linear-by-Linear & 1.935 & & 1
\end{tabular}
a 2 cells (\(33.3 \%\)) have expected count less than 5 . The minimum expected count is 4.25 .

\section*{Crosstabs}

\section*{Age Group in years * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{9}{*}{Age Group in years} & \multirow[t]{3}{*}{18-40} & Count & 983 & 590 & 521 & 205 & 2299 \\
\hline & & \% within Age Group in years & 42.8\% & 25.7\% & 22.7\% & 8.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 71.6\% & 71.9\% & 77.0\% & 62.1\% & 71.8\% \\
\hline & \multirow[t]{3}{*}{41-60} & Count & 310 & 198 & 126 & 114 & 748 \\
\hline & & \% within Age Group in years & 41.4\% & 26.5\% & 16.8\% & 15.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 22.6\% & 24.1\% & 18.6\% & 34.5\% & 23.4\% \\
\hline & \multirow[t]{3}{*}{Above 60} & Count & 79 & 33 & 30 & 11 & 153 \\
\hline & & \% within Age Group in years & 51.6\% & 21.6\% & 19.6\% & 7.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 5.8\% & 4.0\% & 4.4\% & 3.3\% & 4.8\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & \% within Age Group in years & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(36.906(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 35.344 & 6 & .000 \\
Linear-by-Linear & .002 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 15.78 .
Gender * Monthly Income
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{6}{*}{Gender} & Male & Count & 656 & 530 & 340 & 212 & 1738 \\
\hline & & \% within Gender \% within & 37.7\% & 30.5\% & 19.6\% & 12.2\% & 100.0\% \\
\hline & & Monthly Income & 47.8\% & 64.6\% & 50.2\% & 64.2\% & 54.3\% \\
\hline & Female & Count & 716 & 291 & 337 & 118 & 1462 \\
\hline & & \% within Gender & 49.0\% & 19.9\% & 23.1\% & 8.1\% & 100.0\% \\
\hline & & \% within & 52.2\% & 35.4\% & 49.8\% & 35.8\% & 45.7\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & Monthly Income Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & \% within Gender \% within & \[
42.9 \%
\] & \[
25.7 \%
\] & \[
21.2 \%
\] & 10.3\% & 100.0\% \\
\hline & Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(75.746(a)\) & 3 & .000 \\
Likelihood Ratio & 76.546 & 3 & .000 \\
Linear-by-Linear & 19.292 & 1 & .000 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 150.77 .

\section*{Amount spent family on Health and Medicines per month * Monthly Income}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & 279.499 (a) & 12 & .000 \\
Likelihood Ratio & 261.193 & & 12
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 16.09 .

\section*{Marital Status * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{6}{*}{Marital Status} & \multirow[t]{3}{*}{Married} & Count & 793 & 525 & 381 & 220 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\% within
\end{tabular} & 41.3\% & 27.4\% & 19.9\% & 11.5\% & 100.0\% \\
\hline & & Monthly Income & 57.8\% & 63.9\% & 56.3\% & 66.7\% & 60.0\% \\
\hline & \multirow[t]{3}{*}{Single} & Count & 579 & 296 & 296 & 110 & 1281 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\% within
\end{tabular} & 45.2\% & 23.1\% & 23.1\% & 8.6\% & 100.0\% \\
\hline & & Monthly Income & 42.2\% & 36.1\% & 43.7\% & 33.3\% & 40.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(18.111(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 18.266 & 3 & .000 \\
Linear-by-Linear & 2.967 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 132.10 .

\section*{Educational Qualification * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{11}{*}{Educational Qualification} & \multirow[t]{6}{*}{Graduate} & Count & 561 & 448 & 371 & 248 & 1628 \\
\hline & & \% within & & & & & \\
\hline & & Educational & 34.5\% & 27.5\% & 22.8\% & 15.2\% & 100.0\% \\
\hline & & Qualification & & & & & \\
\hline & & \% within Monthly & 40.9\% & 54.6\% & 54.8\% & 75.2\% & 50.9\% \\
\hline & & Income & & & & & \\
\hline & \multirow{4}{*}{HSc} & \% within & & & & & \\
\hline & & Educational & 47.7\% & 23.8\% & 20.1\% & 8.3\% & 100.0\% \\
\hline & & Qualification & & & & & \\
\hline & & \% within Monthly & 20.0\% & 16.7\% & 17.1\% & 14.5\% & 18.0\% \\
\hline & SSLC & Count & 169 & 91 & 69 & 19 & 348 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|rr|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(160.124(\mathrm{a})\) & & 9 & .000 \\
Likelihood Ratio & 174.846 & & 9 & .000 \\
Linear-by-Linear & 132.995 & & 1 & .000 \\
Association & 3200 & & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 35.89 .

\section*{Location * Monthly Income}

\section*{Crosstab}
\begin{tabular}{|l|l|l|l|}
\hline & & Monthly Income & Total \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{6}{*}{Location} & \multirow[t]{3}{*}{Rural} & Count & 633 & 337 & 218 & 67 & 1255 \\
\hline & & \begin{tabular}{l}
\% within Location \\
\% within
\end{tabular} & 50.4\% & 26.9\% & 17.4\% & 5.3\% & 100.0\% \\
\hline & & Monthly Income & 46.1\% & 41.0\% & 32.2\% & 20.3\% & 39.2\% \\
\hline & \multirow[t]{3}{*}{Urban} & Count & 739 & 484 & 459 & 263 & 1945 \\
\hline & & \% within Location \% within & 38.0\% & 24.9\% & 23.6\% & 13.5\% & 100.0\% \\
\hline & & Monthly Income & 53.9\% & 59.0\% & 67.8\% & 79.7\% & 60.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Location \% within & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(92.220(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 96.864 & 3 & .000 \\
Linear-by-Linear & 88.933 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 129.42.

\section*{Buy medicines * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{12}{*}{Buy medicines} & \multirow[t]{3}{*}{Doctor's Prescription} & Count & 1200 & 713 & 568 & 304 & 2785 \\
\hline & & \% within Buy medicines & 43.1\% & 25.6\% & 20.4\% & 10.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 87.5\% & 86.8\% & 83.9\% & 92.1\% & 87.0\% \\
\hline & \multirow[t]{3}{*}{Advice of Family/ Friends} & Count & 46 & 23 & 33 & 8 & 110 \\
\hline & & \% within Buy medicines & 41.8\% & 20.9\% & 30.0\% & 7.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 3.4\% & 2.8\% & 4.9\% & 2.4\% & 3.4\% \\
\hline & \multirow[t]{3}{*}{Suggestion of the Pharmacist} & Count & 96 & 49 & 38 & 8 & 191 \\
\hline & & \% within Buy medicines & 50.3\% & 25.7\% & 19.9\% & 4.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 7.0\% & 6.0\% & 5.6\% & 2.4\% & 6.0\% \\
\hline & \multirow[t]{3}{*}{Others} & Count & 30 & 36 & 38 & 10 & 114 \\
\hline & & \% within Buy medicines & 26.3\% & 31.6\% & 33.3\% & 8.8\% & 100.0\% \\
\hline & & \% within Monthly Income & 2.2\% & 4.4\% & 5.6\% & 3.0\% & 3.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Buy medicines & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 34.447(a) & 9 & . 000 \\
\hline Likelihood Ratio & 35.933 & 9 & . 000 \\
\hline Linear-by-Linear & . 083 & 1 & . 773 \\
\hline
\end{tabular}

Association
\(N\) of Valid Cases

a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 11.34 .

\section*{Family members go to Clinic normally * Monthly Income}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{6}{*}{Family members go to Clinic normally} & \multirow[t]{3}{*}{Govt Hospital / Dispensary} & Count & 627 & 333 & 238 & 68 & 1266 \\
\hline & & \% within Family members go to Clinic normally & 49.5\% & 26.3\% & 18.8\% & 5.4\% & 100.0\% \\
\hline & & \% within Monthly Income & 45.7\% & 40.6\% & 35.2\% & 20.6\% & 39.6\% \\
\hline & \multirow[t]{6}{*}{Private Clinic} & Count & 745 & 488 & 439 & 262 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 38.5\% & 25.2\% & 22.7\% & 13.5\% & 100.0\% \\
\hline & & \% within Monthly Income & 54.3\% & 59.4\% & 64.8\% & 79.4\% & 60.4\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|c|r|r|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & 77.049 (a) & & 3
\end{tabular}
\begin{tabular}{|l|r|r|r|}
Likelihood Ratio & 81.452 & 3 & .000 \\
Linear-by-Linear & 70.986 & 1 & .000 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 130.56

\section*{Reason for go to a Private Doctor / Clinic * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 458 & 267 & 220 & 155 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 41.6\% & 24.3\% & 20.0\% & 14.1\% & 100.0\% \\
\hline & & \% within Monthly Income & 61.5\% & 54.7\% & 50.1\% & 59.2\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 150 & 136 & 133 & 85 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 29.8\% & 27.0\% & 26.4\% & 16.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 20.1\% & 27.9\% & 30.3\% & 32.4\% & 26.1\% \\
\hline & \multirow[t]{6}{*}{No Govt.Hospital nearby} & Count & 137 & 85 & 86 & 22 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 41.5\% & 25.8\% & 26.1\% & 6.7\% & 100.0\% \\
\hline & & \% within Monthly Income & 18.4\% & 17.4\% & 19.6\% & 8.4\% & 17.1\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 745 & 488 & 439 & 262 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 38.5\% & 25.2\% & 22.7\% & 13.5\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 38.692(a) & 6 & . 000 \\
\hline Likelihood Ratio & 41.754 & 6 & . 000 \\
\hline Linear-by-Linear & . 047 & 1 & . 828 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline & 1934 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 44.71 .

\section*{Heard of Generic Drugs * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{10}{*}{Heard of Generic Drugs} & Yes & Count & 309 & 205 & 191 & 132 & 837 \\
\hline & & \% within Heard & & & & & \\
\hline & & of Generic Drugs & 36.9\% & 24.5\% & 22.8\% & 15.8\% & 100.0\% \\
\hline & & \% within Monthly Income & 22.5\% & 25.0\% & 28.2\% & 40.0\% & 26.2\% \\
\hline & No & Count & 890 & 506 & 411 & 166 & 1973 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic Drugs
\end{tabular} & 45.1\% & 25.6\% & 20.8\% & 8.4\% & 100.0\% \\
\hline & & \% within Monthly Income & 64.9\% & 61.6\% & 60.7\% & 50.3\% & 61.7\% \\
\hline & No opinion & Count & 173 & 110 & 75 & 32 & 390 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic \\
Drugs
\end{tabular} & 44.4\% & 28.2\% & 19.2\% & 8.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 12.6\% & 13.4\% & 11.1\% & 9.7\% & 12.2\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|r|r|}
Total & \begin{tabular}{l}
Count \\
\% within Heard \\
of Generic
\end{tabular} & 1372 & 821 & 677 & 330 & 3200 \\
\begin{tabular}{l}
Drugs \\
\% within Monthly \\
Income
\end{tabular} & \(42.9 \%\) & \(25.7 \%\) & \(21.2 \%\) & \(10.3 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(45.489(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 42.956 & 6 & .000 \\
Linear-by-Linear & 27.876 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 40.22 .
Chronic problems for which family members take medicines regularly * Monthly Income
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline Chronic problems for & BP/Hypertension & Count & 168 & 80 & 63 & 42 & 353 \\
\hline which family members take medicines & & \% within Chronic & & & & & \\
\hline regularly & & problems for which family members take medicines regularly & 47.6\% & 22.7\% & 17.8\% & 11.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 12.2\% & 9.7\% & 9.3\% & 12.7\% & 11.0\% \\
\hline & Heart Problems & Count & 36 & 26 & 23 & 17 & 102 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(48.843(\mathrm{a})\) & 15 & .000 \\
Likelihood Ratio & 46.246 & & 15
\end{tabular}
a 1 cells (4.2\%) have expected count less than 5 . The minimum expected count is 3.51 .

\section*{Examine the expiry date when buy medicines * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline Examine the expiry & Yes & Count & 1078 & 673 & 536 & 282 & 2569 \\
\hline date when buy medicines & & \% within Examine the expiry date when buy medicines & 42.0\% & 26.2\% & 20.9\% & 11.0\% & 100.0\% \\
\hline & & \% within Monthly Income & 78.6\% & 82.0\% & 79.2\% & 85.5\% & 80.3\% \\
\hline & No & Count & 254 & 131 & 123 & 42 & 550 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{Total} & \multirow{7}{*}{No opinion} & \% within Examine the expiry date when buy medicines & 46.2\% & 23.8\% & 22.4\% & 7.6\% & 100.0\% \\
\hline & & \% within Monthly Income Count & \(18.5 \%\)
40 & \(16.0 \%\)
17 & 18.2\% & \(12.7 \%\)
6 & \(17.2 \%\)
81 \\
\hline & & \% within Examine the expiry date when buy medicines & 49.4\% & 21.0\% & 22.2\% & 7.4\% & 100.0\% \\
\hline & & \% within Monthly Income & 2.9\% & 2.1\% & 2.7\% & 1.8\% & 2.5\% \\
\hline & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(10.516(\mathrm{a})\) & 6 & .105 \\
Likelihood Ratio & 10.933 & 6 & .090 \\
Linear-by-Linear & 4.653 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 8.35

Victim of expired drugs * Monthly Income
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{8}{*}{Victim of expired drugs} & \multirow[t]{4}{*}{Yes} & Count & 88 & 64 & 50 & 23 & 225 \\
\hline & & \% within Victim of expired drugs & 39.1\% & 28.4\% & 22.2\% & 10.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 6.4\% & 7.8\% & 7.4\% & 7.0\% & 7.0\% \\
\hline & & Count & 1197 & 693 & 584 & 276 & 2750 \\
\hline & \multirow{2}{*}{No} & \% within Victim of expired drugs & 43.5\% & 25.2\% & 21.2\% & 10.0\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Monthly Income Count
\end{tabular} & 87.2\% & 84.4\% & 86.3\% & 83.6\% & 85.9\% \\
\hline & \multirow{5}{*}{No opinion} & \% within Victim of expired drugs & 38.7\% & 28.4\% & 19.1\% & 13.8\% & 100.0\% \\
\hline & & \% within Monthly Income & 6.3\% & 7.8\% & 6.4\% & 9.4\% & 7.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Victim of expired drugs & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Value }\end{array}\)} & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & 6.931 (a) & 6 & .327 \\
Likelihood Ratio & 6.702 & 6 & .349 \\
Linear-by-Linear & .211 & & 1
\end{tabular}\() .646\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expect
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 23.20.

\section*{Check the MRP (Maximum Retail Price) before buying drugs * Monthly Income}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.899(\mathrm{a})\) & & 6 \\
Likelihood Ratio & 15.999 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 13.41 .

\section*{Charged the MRP of buying drugs * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{10}{*}{Charged the MRP of buying drugs} & Above MRP & Count & 123 & 45 & 73 & 32 & 273 \\
\hline & & \% within Charged & & & & & \\
\hline & & the MRP of buying drugs & 45.1\% & 16.5\% & 26.7\% & 11.7\% & 100.0\% \\
\hline & & \% within Monthly Income & 9.0\% & 5.5\% & 10.8\% & 9.7\% & 8.5\% \\
\hline & Below MRP & Count & 223 & 176 & 163 & 69 & 631 \\
\hline & & \% within Charged the MRP of buying drugs & 35.3\% & 27.9\% & 25.8\% & 10.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 16.3\% & 21.4\% & 24.1\% & 20.9\% & 19.7\% \\
\hline & At MRP & Count & 1026 & 600 & 441 & 229 & 2296 \\
\hline & & \% within Charged the MRP of buying drugs & 44.7\% & 26.1\% & 19.2\% & 10.0\% & 100.0\% \\
\hline & & \% within Monthly Income & 74.8\% & 73.1\% & 65.1\% & 69.4\% & 71.8\% \\
\hline Total & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within Charged \\
the MRP of buying \\
drugs \\
\% within Monthly \\
Income
\end{tabular} & \(42.9 \%\) & \(25.7 \%\) & \(21.2 \%\) & \(10.3 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(36.484(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 37.630 & 6 & .000 \\
Linear-by-Linear & 10.402 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 28.15.

\section*{Practice Self-medication * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{6}{*}{Practice Selfmedication} & Yes & Count & 538 & 277 & 246 & 112 & 1173 \\
\hline & & \% within Practice Self-medication & 45.9\% & 23.6\% & 21.0\% & 9.5\% & 100.0\% \\
\hline & & \% within Monthly Income & 39.2\% & 33.7\% & 36.3\% & 33.9\% & 36.7\% \\
\hline & No & Count & 744 & 470 & 390 & 198 & 1802 \\
\hline & & \begin{tabular}{l}
\% within Practice \\
Self-medication
\end{tabular} & 41.3\% & 26.1\% & 21.6\% & 11.0\% & 100.0\% \\
\hline & & \% within Monthly Income & 54.2\% & 57.2\% & 57.6\% & 60.0\% & 56.3\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{No opinion} & Count & 90 & 74 & 41 & 20 & 225 \\
\hline & & \% within Practice Self-medication & 40.0\% & 32.9\% & 18.2\% & 8.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 6.6\% & 9.0\% & 6.1\% & 6.1\% & 7.0\% \\
\hline & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Practice Self-medication & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(13.599(\mathrm{a})\) & 6 & .034 \\
Likelihood Ratio & 13.307 & 6 & .038 \\
Linear-by-Linear & 2.010 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 23.20 .

\section*{Come across counterfeit medicines * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{4}{*}{Come across counterfeit medicines} & \multirow[t]{4}{*}{Yes} & Count & 70 & 37 & 37 & 19 & 163 \\
\hline & & \% within Come & & & & & \\
\hline & & across counterfeit medicines & 42.9\% & 22.7\% & 22.7\% & 11.7\% & 100.0\% \\
\hline & & \% within Monthly & 5.1\% & 4.5\% & 5.5\% & 5.8\% & 5.1\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{10}{*}{Total} & \multirow{4}{*}{No} & Income & & & & & \\
\hline & & Count & 1138 & 641 & 558 & 264 & 2601 \\
\hline & & \% within Come across counterfeit medicines & 43.8\% & 24.6\% & 21.5\% & 10.1\% & 100.0\% \\
\hline & & \% within Monthly Income & 82.9\% & 78.1\% & 82.4\% & 80.0\% & 81.3\% \\
\hline & No opinion & Count & 164 & 143 & 82 & 47 & 436 \\
\hline & & \% within Come across counterfeit medicines & 37.6\% & 32.8\% & 18.8\% & 10.8\% & 100.0\% \\
\hline & & \% within Monthly Income & 12.0\% & 17.4\% & 12.1\% & 14.2\% & 13.6\% \\
\hline & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Come across counterfeit medicines & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 15.416(a) & 6 & . 017 \\
\hline Likelihood Ratio & 14.891 & 6 & . 021 \\
\hline Linear-by-Linear & . 164 & 1 & . 685 \\
\hline Association & . 164 & 1 & . 685 \\
\hline N of Valid Cas & 3200 & & \\
\hline
\end{tabular}

\section*{If victim of expired drugs, complain to officials * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{8}{*}{If victim of expired drugs, complain to officials} & \multirow[t]{3}{*}{Drug Inspector} & Count & 38 & 16 & 16 & 9 & 79 \\
\hline & & \% within If victim of expired drugs, complain to officials & 48.1\% & 20.3\% & 20.3\% & 11.4\% & 100.0\% \\
\hline & & \% within Monthly Income & 43.2\% & 25.0\% & 32.0\% & 39.1\% & 35.1\% \\
\hline & \multirow[t]{3}{*}{State Drug Controller} & Count & 19 & 23 & 15 & 9 & 66 \\
\hline & & \% within If victim of expired drugs, complain to officials & 28.8\% & 34.8\% & 22.7\% & 13.6\% & 100.0\% \\
\hline & & \% within Monthly Income Count & 21.6\% & 35.9\% & 30.0\% & 39.1\% & 29.3\% \\
\hline & \multirow{2}{*}{Others} & \% within If victim of expired drugs, complain to officials & 38.8\% & 31.3\% & 23.8\% & 6.3\% & 100.0\% \\
\hline & & \% within Monthly Income Count & 35.2\% & 39.1\% & 38.0\% & 21.7\% & 35.6\% \\
\hline \multirow{2}{*}{Total} & & \% within If victim of expired drugs, complain to officials & 39.1\% & 64
\(28.4 \%\) & 22.2\% & 10.2\% & (225 \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(8.793(\mathrm{a})\) & 6 & .186 \\
Likelihood Ratio & 9.130 & 6 & .166 \\
Linear-by-Linear & .024 & & 1
\end{tabular}

\section*{Satisfaction level of complaints * Monthly Income}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(9.132(\mathrm{a})\) & 6 & .166 \\
Likelihood Ratio & 9.551 & & 6
\end{tabular}
a 1 cells \((8.3 \%)\) have expected count less than 5 . The minimum expected count is 2.96 .

\section*{Insist for bills when buy medicines * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{9}{*}{Insist for bills when buy medicines} & Yes & Count & 1000 & 605 & 469 & 260 & 2334 \\
\hline & & \% within Insist for bills when buy medicines & 42.8\% & 25.9\% & 20.1\% & 11.1\% & 100.0\% \\
\hline & & \% within Monthly Income & 72.9\% & 73.7\% & 69.3\% & 78.8\% & 72.9\% \\
\hline & No & Count & 333 & 184 & 185 & 58 & 760 \\
\hline & & \% within Insist for bills when buy medicines & 43.8\% & 24.2\% & 24.3\% & 7.6\% & 100.0\% \\
\hline & & \% within Monthly Income & 24.3\% & 22.4\% & 27.3\% & 17.6\% & 23.8\% \\
\hline & No opinion & Count & 39 & 32 & 23 & 12 & 106 \\
\hline & & \% within Insist for bills when buy medicines & 36.8\% & 30.2\% & 21.7\% & 11.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 2.8\% & 3.9\% & 3.4\% & 3.6\% & 3.3\% \\
\hline Total & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(14.459(\mathrm{a})\) & 6 & .025 \\
Likelihood Ratio & 14.808 & 6 & .022 \\
Linear-by-Linear & .031 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 10.93 .

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Monthly Income

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline When the particular Yes & Count & 896 & 524 & 429 & 223 & 2072 \\
\hline brand of medicine & \% within When the & & & & & \\
\hline looking for is not & particular brand of & & & & & \\
\hline available, asked by & medicine looking for is & & & & & \\
\hline the Pharmacies to buy & not available, asked & & & & & \\
\hline alternative company & by the Pharmacies to & 43.2\% & 25.3\% & 20.7\% & 10.8\% & 100.0\% \\
\hline drugs having the same components & buy alternative & & & & & \\
\hline same component & company drugs having the same components & & & & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 4.276(a) & 6 & . 639 \\
\hline Likelihood Ratio & 4.293 & 6 & . 637 \\
\hline Linear-by-Linear & . 056 & 1 & . 813 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline Nof Valid Cases & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.03 .

\section*{Ready to buy as advised by the Pharmacy * Monthly Income}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & \% within Ready to buy as advised by the Pharmacy & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(12.070(\mathrm{a})\) & 6 & .060 \\
Likelihood Ratio & 11.874 & 6 & .065 \\
Linear-by-Linear & 7.593 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 18.77.

\section*{Bought medicines through online * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & Monthly & Income & & \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & Total \\
\hline Bought medicines & Yes & Count & 110 & 100 & 104 & 61 & 375 \\
\hline through online & & \% within Bought medicines through online & 29.3\% & 26.7\% & 27.7\% & 16.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 8.0\% & 12.2\% & 15.4\% & 18.5\% & 11.7\% \\
\hline & No & Count & 1216 & 686 & 548 & 263 & 2713 \\
\hline & & \% within Bought medicines through online & 44.8\% & 25.3\% & 20.2\% & 9.7\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{No opinion} & \% within Monthly Income Count & \(88.6 \%\)
46 & \(83.6 \%\)
35 & \(80.9 \%\)
25 & 79.7\% & \(84.8 \%\)
112 \\
\hline & & \% within Bought medicines through online & 41.1\% & 31.3\% & 22.3\% & 5.4\% & 100.0\% \\
\hline & & \% within Monthly Income & 3.4\% & 4.3\% & 3.7\% & 1.8\% & 3.5\% \\
\hline & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Bought medicines through online & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(45.660(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 45.531 & 6 & .000 \\
Linear-by-Linear & 33.368 & & 1
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 11.55 .

\section*{Look into the dosage level prescribed in the drugs when buy medicine * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{Monthly Income} & \\
\hline & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & Total \\
\hline Look into the dosage Yes & Count & 766 & 455 & 386 & 198 & 1805 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline level prescribed in the drugs when buy medicine & \% within Look into the dosage level prescribed in the drugs when buy medicine \% within Monthly Income Count & \(42.4 \%\)
\(55.8 \%\)
530 & \(25.2 \%\)
\(55.4 \%\)
330 & \(21.4 \%\)
\(57.0 \%\)
254 & \(11.0 \%\)
\(60.0 \%\)
122 & \(100.0 \%\)

\(56.4 \%\)
1236 \\
\hline No opinion & \begin{tabular}{l}
\% within Look into the dosage level prescribed in the drugs when buy medicine \\
\% within Monthly Income Count
\end{tabular} & \(42.9 \%\)
\(38.6 \%\)
76 & \(26.7 \%\)
\(40.2 \%\)
36 & \(20.6 \%\)
\(37.5 \%\)
37 & \(9.9 \%\)

\(37.0 \%\)
10 & \(100.0 \%\)

\(38.6 \%\)
159 \\
\hline Total & \% within Look into the dosage level prescribed in the drugs when buy medicine \% within Monthly Income Count & \(47.8 \%\)

\(5.5 \%\)
1372 & \(22.6 \%\)

\(4.4 \%\)
821 & \(23.3 \%\)

\(5.5 \%\)
677 & \(6.3 \%\)
\(3.0 \%\)
330 & \(100.0 \%\)

\(5.0 \%\)
3200 \\
\hline & \% within Look into the dosage level prescribed in the drugs when buy medicine \% within Monthly Income & \(42.9 \%\)

\(100.0 \%\) & \(25.7 \%\)
100.0\% & \(21.2 \%\)

\(100.0 \%\) & \(10.3 \%\)
\(100.0 \%\) & \(100.0 \%\)
100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|l|r|r|}
\hline & & & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(6.289(\mathrm{a})\) & & 6 \\
Likelihood Ratio & 6.661 & 6 & .392 \\
& & & .353
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\begin{tabular}{l}
Linear-by-Linear \\
Association \\
N of Valid Cases
\end{tabular} & 2.388 \\
& 3200
\end{tabular}\(|\)\begin{tabular}{l}
1 \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 16.40 .

\section*{Aware of Schedule H - drug * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{9}{*}{Aware of Schedule H - drug} & \multirow[t]{3}{*}{Yes} & Count & 123 & 73 & 96 & 70 & 362 \\
\hline & & \% within Aware of Schedule H-drug & 34.0\% & 20.2\% & 26.5\% & 19.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 9.0\% & 8.9\% & 14.2\% & 21.2\% & 11.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1030 & 600 & 451 & 204 & 2285 \\
\hline & & \% within Aware of Schedule H-drug & 45.1\% & 26.3\% & 19.7\% & 8.9\% & 100.0\% \\
\hline & & \% within Monthly Income & 75.1\% & 73.1\% & 66.6\% & 61.8\% & 71.4\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 219 & 148 & 130 & 56 & 553 \\
\hline & & \% within Aware of Schedule H - drug & 39.6\% & 26.8\% & 23.5\% & 10.1\% & 100.0\% \\
\hline & & \% within Monthly Income & 16.0\% & 18.0\% & 19.2\% & 17.0\% & 17.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1372 & 821 & 677 & 330 & 3200 \\
\hline & & \% within Aware of Schedule H-drug & 42.9\% & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(56.886(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 51.651 & 6 & .000 \\
Linear-by-Linear & 8.122 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 37.33 .

\section*{Got Schedule H - drug without medical prescription * Monthly Income}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Crosstab} \\
\hline & & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & \multirow[t]{2}{*}{Above 30000
19} & \\
\hline \multirow[t]{11}{*}{Got Schedule H drug without medical prescription} & \multirow[t]{5}{*}{Yes} & Count & \multirow[t]{3}{*}{67} & 36 & 46 & & \multirow[t]{2}{*}{168} \\
\hline & & \% within Got & & & & & \\
\hline & & Schedule H-drug without medical & & 21.4\% & 27.4\% & 11.3\% & 100.0\% \\
\hline & & prescription & & & & & \\
\hline & & \% within Monthly & 4.9\% & 4.4\% & 6.8\% & 5.8\% & 5.3\% \\
\hline & No & Income Count & & & & & \\
\hline & & \% within Got & & & & & \\
\hline & & Schedule H-drug without medical prescription & 45.1\% & 24.9\% & 20.3\% & 9.8\% & 100.0\% \\
\hline & & \% within Monthly Income & 67.6\% & 62.4\% & 61.6\% & 60.9\% & 64.3\% \\
\hline & No opinion & Count & 378 & 273 & 214 & 110 & 975 \\
\hline & & \% within Got Schedule H-drug without medical prescription & 38.8\% & 28.0\% & 21.9\% & 11.3\% & 100.0\% \\
\hline
\end{tabular}

170
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & \% within Monthly Income Count & \[
\begin{array}{r}
27.6 \% \\
1372
\end{array}
\] & \[
\begin{array}{r}
33.3 \% \\
821
\end{array}
\] & \(31.6 \%\)
677 & \(33.3 \%\)
330 & \[
\begin{array}{r}
30.5 \% \\
3200
\end{array}
\] \\
\hline & \% within Got Schedule H - drug without medical prescription & \[
42.9 \%
\] & 25.7\% & 21.2\% & 10.3\% & 100.0\% \\
\hline & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.975(\mathrm{a})\) & & 6 \\
\hline Likelihood Ratio & 15.811 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 17.33.

\section*{Affected due to over dosage of drug * Monthly Income}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Total} & \multirow[t]{3}{*}{No opinion} & \% within Affected due to over dosage of drug \% within Monthly Income Count & \(43.4 \%\)
\(77.3 \%\)
123 & \(25.4 \%\)
\(75.6 \%\)
100 & \(21.0 \%\)
\(75.8 \%\)
56 & \(10.2 \%\)
\(75.2 \%\)
38 & \(100.0 \%\)
\(76.3 \%\)
317 \\
\hline & & \% within Affected due to over dosage of drug \% within Monthly Income Count & \(38.8 \%\)

\(9.0 \%\)
1372 & \(31.5 \%\)
\(12.2 \%\)
821 & \(17.7 \%\)

\(8.3 \%\)
677 & \(12.0 \%\)

\(11.5 \%\)
330 & \(100.0 \%\)

\(9.9 \%\)
3200 \\
\hline & & \% within Affected due to over dosage of drug \% within Monthly Income & \(42.9 \%\)
100.0\% & \(25.7 \%\)
100.0\% & \(21.2 \%\)
\(100.0 \%\) & \(10.3 \%\)
\(100.0 \%\) & \(100.0 \%\)
100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(12.424(\mathrm{a})\) & 6 & .053 \\
Likelihood Ratio & 12.178 & 6 & .058 \\
Linear-by-Linear & .000 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 32.69.

\section*{If yes, mode of get the drug * Monthly Income}

Crosstab
\begin{tabular}{|l|l|l|l|}
\hline & & Monthly Income & Total \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & \multirow[t]{3}{*}{On prescription} & Count & 92 & 34 & 44 & 26 & 196 \\
\hline & & \% within If yes, mode of get the drug & 46.9\% & 17.3\% & 22.4\% & 13.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 48.9\% & 34.0\% & 40.7\% & 59.1\% & 44.5\% \\
\hline & \multirow[t]{3}{*}{Overcounter in pharmacy} & Count & 50 & 31 & 32 & 8 & 121 \\
\hline & & \% within If yes, mode of get the drug & 41.3\% & 25.6\% & 26.4\% & 6.6\% & 100.0\% \\
\hline & & \% within Monthly Income & 26.6\% & 31.0\% & 29.6\% & 18.2\% & 27.5\% \\
\hline & \multirow[t]{3}{*}{Self medication} & Count & 46 & 35 & 32 & 10 & 123 \\
\hline & & \% within If yes, mode of get the drug & 37.4\% & 28.5\% & 26.0\% & 8.1\% & 100.0\% \\
\hline & & \% within Monthly Income & 24.5\% & 35.0\% & 29.6\% & 22.7\% & 28.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 188 & 100 & 108 & 44 & 440 \\
\hline & & \% within If yes, mode of get the drug & 42.7\% & 22.7\% & 24.5\% & 10.0\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(10.951(\mathrm{a})\) & 6 & .090 \\
Likelihood Ratio & 11.064 & 6 & .086 \\
Linear-by-Linear & .034 & & 1
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 12.10 .

\section*{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Monthly Income}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(36.618(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 36.733 & 6 & .000 \\
Linear-by-Linear & 15.124 & & 1
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 30.42 .

Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Monthly Income

Crosstab
\begin{tabular}{|l|l|r|r|r|r|}
\hline & & & \multicolumn{3}{|c|}{ Monthly Income } \\
\cline { 3 - 7 } & & & Upto 10000 & 10001-20000 & 20001-30000 \\
Above 30000 & Total \\
\hline Aware of Consumer Yes & & 809 & 520 & 422 & 227 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(18.408(a)\) & 6 & .005 \\
Likelihood Ratio & 18.410 & & 6 \\
Linear-by-Linear & 6.633 & & 1
\end{tabular}
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecter
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 22.07 .

\section*{If yes, filled a case in the Consumer Court * Monthly Income}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Monthly Income} & \multirow[b]{2}{*}{Total} \\
\hline & & & Upto 10000 & 10001-20000 & 20001-30000 & Above 30000 & \\
\hline \multirow[t]{8}{*}{If yes, filled a case in the Consumer Court} & Yes & Count & 28 & 16 & 19 & 9 & 72 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 38.9\% & 22.2\% & 26.4\% & 12.5\% & 100.0\% \\
\hline & & \% within Monthly Income & 3.5\% & 3.1\% & 4.5\% & 4.0\% & 3.6\% \\
\hline & No & Count & 757 & 480 & 384 & 207 & 1828 \\
\hline & & \(\%\) within If yes, filled a case in the Consumer Court & 41.4\% & 26.3\% & 21.0\% & 11.3\% & 100.0\% \\
\hline & & \% within Monthly Income & 93.6\% & 92.3\% & 91.0\% & 91.2\% & 92.4\% \\
\hline & No opinion & Count & 24 & 24 & 19 & 11 & 78 \\
\hline & & \(\%\) within If yes, filled a case in the Consumer Court & 30.8\% & 30.8\% & 24.4\% & 14.1\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total} & \% within Monthly Income Count & \(3.0 \%\)
809 & \(4.6 \%\)
520 & \(4.5 \%\)
422 & \(4.8 \%\)
227 & \(3.9 \%\)
1978 \\
\hline & \% within If yes, filled a case in the Consumer Court & 40.9\% & 26.3\% & 21.3\% & 11.5\% & 100.0\% \\
\hline & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(5.055(\mathrm{a})\) & 6 & .537 \\
Likelihood Ratio & 5.126 & 6 & .528 \\
Linear-by-Linear & .375 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 8.26

\section*{If files case, Consumer Court able to redress grievance * Monthly Income}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{Total} & \multirow{7}{*}{No opinion} & \% within If files case, Consumer Court able to redress grievance & 16.7\% & 33.3\% & 33.3\% & 16.7\% & 100.0\% \\
\hline & & \% within Monthly Income Count & \(7.1 \%\)
4 & 25.0\% & 21.1\% & 22.2\% & \(16.7 \%\)
9 \\
\hline & & \% within If files case, Consumer Court able to redress grievance & 44.4\% & 11.1\% & 22.2\% & 22.2\% & 100.0\% \\
\hline & & \% within Monthly Income & 14.3\% & 6.3\% & 10.5\% & 22.2\% & 12.5\% \\
\hline & & Count & 28 & 16 & 19 & 9 & 72 \\
\hline & & \% within If files case, Consumer Court able to redress grievance & 38.9\% & 22.2\% & 26.4\% & 12.5\% & 100.0\% \\
\hline & & \% within Monthly Income & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(4.446(\mathrm{a})\) & 6 & .617 \\
Likelihood Ratio & 4.745 & 6 & .577 \\
Linear-by-Linear & .954 & 1 & .329 \\
Association & 72 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 8 cells \((66.7 \%\)) have expected count less than 5 . The minimum expected count is 1.13 .

\section*{Crosstabs}

Age Group in years * Educational Qualification

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Age Group in years} & \multirow[t]{3}{*}{18-40} & \multirow[t]{2}{*}{Count \% within Age Group in years} & \multirow[t]{2}{*}{\[
\begin{array}{r}
1322 \\
57.5 \%
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
445 \\
19.4 \%
\end{array}
\]} & 229 & 303 & \multirow[t]{2}{*}{\[
\begin{array}{r}
2299 \\
100.0 \%
\end{array}
\]} \\
\hline & & & & & 10.0\% & 13.2\% & \\
\hline & & \% within Educational Qualification & 81.2\% & 77.3\% & 65.8\% & 46.8\% & 71.8\% \\
\hline & 41-60 & Count & 259 & 121 & 94 & 274 & 748 \\
\hline & & \% within Age Group in years & 34.6\% & 16.2\% & 12.6\% & 36.6\% & 100.0\% \\
\hline & & \% within Educational Qualification & 15.9\% & 21.0\% & 27.0\% & 42.3\% & 23.4\% \\
\hline & Above 60 & Count & 47 & 10 & 25 & 71 & 153 \\
\hline & & \% within Age Group in years & 30.7\% & 6.5\% & 16.3\% & 46.4\% & 100.0\% \\
\hline & & \% within Educational Qualification & 2.9\% & 1.7\% & 7.2\% & 11.0\% & 4.8\% \\
\hline Total & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Age Group in years & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & Value & df & \\
Likelihood Ratio & 285.254 & & 6
\end{tabular}
\begin{tabular}{|l|r|r|}
\begin{tabular}{l}
Linear-by-Linear \\
Association \\
N of Valid Cases
\end{tabular} & 263.847 \\
& 3200
\end{tabular}\(|\)\begin{tabular}{l}
1 \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 16.64.
Gender * Educational Qualification

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{6}{*}{Gender} & \multirow[t]{3}{*}{Male} & Count & \multirow[t]{2}{*}{\[
\begin{array}{r}
890 \\
51.2 \%
\end{array}
\]} & 303 & 206 & 339 & 1738 \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
\% within \\
Gender \\
\% within \\
Educational \\
Qualification \\
Count
\end{tabular}} & & 17.4\% & 11.9\% & 19.5\% & 100.0\% \\
\hline & & & 54.7\% & 52.6\% & 59.2\% & 52.3\% & 54.3\% \\
\hline & \multirow[t]{3}{*}{Female} & & 738 & 273 & 142 & 309 & 1462 \\
\hline & & \% within Gender \% within & 50.5\% & 18.7\% & 9.7\% & 21.1\% & 100.0\% \\
\hline & & Educational Qualification & 45.3\% & 47.4\% & 40.8\% & 47.7\% & 45.7\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \begin{tabular}{l}
\% within \\
Gender
\end{tabular} & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|c|c|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(5.146(\mathrm{a})\) & 3 & .161 \\
Likelihood Ratio & 5.168 & 3 & .160 \\
Linear-by-Linear & .190 & 1 & .663 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 158.99.

\section*{Monthly Income * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{11}{*}{Monthly Income} & \multirow[t]{3}{*}{Upto 10000} & Count & 561 & 275 & 169 & 367 & 1372 \\
\hline & & \begin{tabular}{l}
\% within Monthly Income \\
\% within
\end{tabular} & 40.9\% & 20.0\% & 12.3\% & 26.7\% & 100.0\% \\
\hline & & Educational Qualification & 34.5\% & 47.7\% & 48.6\% & 56.6\% & 42.9\% \\
\hline & \multirow[t]{3}{*}{10001-20000} & Count & 448 & 137 & 91 & 145 & 821 \\
\hline & & \% within Monthly Income \% within & 54.6\% & 16.7\% & 11.1\% & 17.7\% & 100.0\% \\
\hline & & Educational Qualification & 27.5\% & 23.8\% & 26.1\% & 22.4\% & 25.7\% \\
\hline & \multirow[t]{3}{*}{20001-30000} & Count & 371 & 116 & 69 & 121 & 677 \\
\hline & & \% within Monthly Income \% within & 54.8\% & 17.1\% & 10.2\% & 17.9\% & 100.0\% \\
\hline & & Educational Qualification & 22.8\% & 20.1\% & 19.8\% & 18.7\% & 21.2\% \\
\hline & \multirow[t]{2}{*}{Above 30000} & Count & 248 & 48 & 19 & 15 & 330 \\
\hline & & \% within Monthly Income & 75.2\% & 14.5\% & 5.8\% & 4.5\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within Educational Qualification & 15.2\% & 8.3\% & 5.5\% & 2.3\% & 10.3\% \\
\hline & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & \% within Monthly Income \% within & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(160.124(\mathrm{a})\) & & 9 \\
Likelihood Ratio & 174.846 & & 9
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 35.89 .

\section*{Amount spent family on Health and Medicines per month * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Amount spent & Upto 1000 & Count & 754 & 283 & 159 & 343 & \multirow[t]{3}{*}{1539} \\
\hline family on Health & & \% within Amount & & & & & \\
\hline and Medicines per & & spent family on & & & & & \\
\hline month & & Health and & 49.0\% & 18.4\% & 10.3\% & 22.3\% & 100.0\% \\
\hline & & Medicines per month & & & & & \\
\hline
\end{tabular}

\begin{tabular}{ll|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within Amount \\
spent family on \\
Health and \\
Medicines per \\
month \\
\% within \\
Educational \\
Qualification
\end{tabular} & \(50.9 \%\) & \(18.0 \%\) & \(10.9 \%\) & & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(25.285(\mathrm{a})\) & 12 & .014 \\
Likelihood Ratio & 26.699 & 12 & .009 \\
Linear-by-Linear & 7.601 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 16.97.

\section*{Marital Status * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Marital Status & Married & Count & 771 & 331 & 243 & 574 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status \\
\(\%\) within
\end{tabular} & 40.2\% & 17.2\% & 12.7\% & 29.9\% & 100.0\% \\
\hline & & Educational Qualification & 47.4\% & 57.5\% & 69.8\% & 88.6\% & 60.0\% \\
\hline & Single & Count & 857 & 245 & 105 & 74 & 1281 \\
\hline & & \% within & 66.9\% & 19.1\% & 8.2\% & 5.8\% & 100.0\% \\
\hline & & & & & 85 & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(344.399(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 383.609 & 3 & .000 \\
Linear-by-Linear & 339.670 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 139.31.

\section*{Location * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Location & Rural & Count & 592 & 224 & 151 & 288 & 1255 \\
\hline & & \% within Location & 47.2\% & 17.8\% & 12.0\% & 22.9\% & 100.0\% \\
\hline & & \% within Educational Qualification & 36.4\% & 38.9\% & 43.4\% & 44.4\% & 39.2\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{Urban} & Count & 1036 & 352 & 197 & 360 & 1945 \\
\hline & & \% within Location \% within & 53.3\% & 18.1\% & 10.1\% & 18.5\% & 100.0\% \\
\hline & & Educational Qualification & 63.6\% & 61.1\% & 56.6\% & 55.6\% & 60.8\% \\
\hline & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Location \% within & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.558(\mathrm{a})\) & 3 & .001 \\
Likelihood Ratio & 15.481 & 3 & .001 \\
Linear-by-Linear & 15.213 & & 1
\end{tabular}
a 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 136.48

\section*{Buy medicines * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Buy medicines & \multirow[t]{2}{*}{Doctor's Prescription} & Count & 1481 & 488 & 314 & 502 & 2785 \\
\hline & & \% within Buy medicines & 53.2\% & 17.5\% & 11.3\% & 18.0\% & \[
100.0 \%
\] \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(124.196(\mathrm{a})\) & 9 & .000 \\
Likelihood Ratio & 107.752 & & 9
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 11.96 .

\section*{Family members go to Clinic normally * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{6}{*}{Family members go to Clinic normally} & \multirow[t]{3}{*}{Govt Hospital / Dispensary} & Count & 494 & 258 & 153 & 361 & 1266 \\
\hline & & \% within Family members go to Clinic normally & 39.0\% & 20.4\% & 12.1\% & 28.5\% & 100.0\% \\
\hline & & \% within Educational Qualification & 30.3\% & 44.8\% & 44.0\% & 55.7\% & 39.6\% \\
\hline & \multirow[t]{3}{*}{Private Clinic} & Count & 1134 & 318 & 195 & 287 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 58.6\% & 16.4\% & 10.1\% & 14.8\% & 100.0\% \\
\hline & & \% within Educational Qualification & 69.7\% & 55.2\% & 56.0\% & 44.3\% & 60.4\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rl}
Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \multicolumn{1}{|c|}{\(137.932(a)\)} & 3 & .000 \\
Likelihood Ratio & 137.851 & 3 & .000 \\
Linear-by-Linear & 128.485 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 137.68 .
Reason for go to a Private Doctor / Clinic * Educational Qualification

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 629 & 177 & 107 & 187 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 57.2\% & 16.1\% & 9.7\% & 17.0\% & 100.0\% \\
\hline & & \% within Educational Qualification & 55.5\% & 55.7\% & 54.9\% & 65.2\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 333 & 79 & 52 & 40 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 66.1\% & 15.7\% & 10.3\% & 7.9\% & 100.0\% \\
\hline & & Qualification & 29.4\% & 24.8\% & 26.7\% & 13.9\% & 26.1\% \\
\hline & \multirow[t]{3}{*}{No Govt.Hospital nearby} & Count & 172 & 62 & 36 & 60 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 52.1\% & 18.8\% & 10.9\% & 18.2\% & 100.0\% \\
\hline & & \% within Educational Qualification & 15.2\% & 19.5\% & 18.5\% & 20.9\% & 17.1\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1134 & 318 & 195 & 287 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 58.6\% & 16.4\% & 10.1\% & 14.8\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(31.422(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 34.288 & 6 & .000 \\
Linear-by-Linear & .127 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 33.27 .

\section*{Heard of Generic Drugs * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Heard of Generic Drugs} & \multirow[t]{4}{*}{Yes} & Count & 563 & 133 & 72 & 69 & 837 \\
\hline & & \% within Heard & & & & & \\
\hline & & of Generic Drugs & 67.3\% & 15.9\% & 8.6\% & 8.2\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Educational \\
Qualification
\end{tabular} & 34.6\% & 23.1\% & 20.7\% & 10.6\% & 26.2\% \\
\hline & No & Count & 874 & 363 & 234 & 502 & 1973 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic \\
Drugs \\
\% within
\end{tabular} & 44.3\% & 18.4\% & 11.9\% & 25.4\% & 100.0\% \\
\hline & & Educational Qualification & 53.7\% & 63.0\% & 67.2\% & 77.5\% & 61.7\% \\
\hline & No opinion & Count & 191 & 80 & 42 & 77 & 390 \\
\hline & & \begin{tabular}{l}
\% within Heard \\
of Generic Drugs
\end{tabular} & 49.0\% & 20.5\% & 10.8\% & 19.7\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|r|}
& \begin{tabular}{l}
\% within \\
Educational \\
Qualification
\end{tabular} & \(11.7 \%\) & \(13.9 \%\) & \(12.1 \%\) & \(11.9 \%\) & \(12.2 \%\) \\
Total & 1628 & 576 & 348 & 648 & 3200 \\
\begin{tabular}{l}
Count \\
\% within Heard \\
of Generic
\end{tabular} & \(50.9 \%\) & \(18.0 \%\) & \(10.9 \%\) & \(20.3 \%\) & \(100.0 \%\) \\
\begin{tabular}{l}
Drugs \\
\% within \\
Educational \\
Qualification
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(156.507(a)\) & 6 & .000 \\
Likelihood Ratio & 168.851 & & 6 \\
Linear-by-Linear & 78.038 & & 1
\end{tabular}\() .000\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecter
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 42.41 .

\section*{Chronic problems for which family members take medicines regularly * Educational Qualification}

Crosstab
\begin{tabular}{|ll|l|r|r|r|r|c|}
\hline & & \multicolumn{4}{|c|}{ Educational Qualification } & \\
& & & Graduate & HSc & SSLC & Below SSLC & Total \\
\hline Chronic problems for BP/Hypertension & Count & 154 & 60 & 54 & 85 & 353
\end{tabular}
\begin{tabular}{|l}
which family \\
members take \\
medicines regularly
\end{tabular}

Heart Problems

Diabetes
\% within Chronic problems for which family members take medicines regularly
\% within Educational Qualification

Count
\% within Chronic problems for which family members take medicines regularly
\% within Educational Qualification

Count
\% within Chronic problems for which family members take medicines regularly
\% within Educational Qualification
Count
\% within Chronic problems for which family members take medicines regularly
\% within Educational Qualification

\section*{Arthritis}

Others

Count
\% within Chronic problems for which family members take medicines regularly
\% within Educational Qualification
Count
\begin{tabular}{|c|c|c|c|c|}
\hline 43.6\% & 17.0\% & 15.3\% & 24.1\% & 100.0\% \\
\hline 9.5\% & 10.4\% & 15.5\% & 13.1\% & 11.0\% \\
\hline 46 & 20 & 14 & 22 & 102 \\
\hline 45.1\% & 19.6\% & 13.7\% & 21.6\% & 100.0\% \\
\hline 2.8\% & 3.5\% & 4.0\% & 3.4\% & 3.2\% \\
\hline 132 & 65 & 41 & 107 & 345 \\
\hline 38.3\% & 18.8\% & 11.9\% & 31.0\% & 100.0\% \\
\hline 8.1\% & 11.3\% & 11.8\% & 16.5\% & 10.8\% \\
\hline 139 & 55 & 27 & 55 & 276 \\
\hline 50.4\% & 19.9\% & 9.8\% & 19.9\% & 100.0\% \\
\hline 8.5\% & 9.5\% & 7.8\% & 8.5\% & 8.6\% \\
\hline 10 & 10 & 6 & 8 & 34 \\
\hline 29.4\% & 29.4\% & 17.6\% & 23.5\% & 100.0\% \\
\hline .6\% & 1.7\% & 1.7\% & 1.2\% & 1.1\% \\
\hline 1147 & 366 & 206 & 371 & 2090 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Total} & \% within Chronic problems for which family members take medicines regularly & 54.9\% & 17.5\% & 9.9\% & 17.8\% & 100.0\% \\
\hline & \% within Educational Qualification & 70.5\% & 63.5\% & 59.2\% & 57.3\% & 65.3\% \\
\hline & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(68.763(\mathrm{a})\) & & 15 \\
Likelihood Ratio & 66.365 & & 15 \\
Linear-by-Linear & 39.237 & & 1
\end{tabular}
a 1 cells \((4.2 \%)\) have expected count less than 5 . The minimum expected count is 3.70 .
Examine the expiry date when buy medicines * Educational Qualification
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Examine the expiry & Yes & Count & 1418 & 442 & 277 & 432 & 2569 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{date when buy medicines} & & \% within Examine the expiry date when buy medicines & 55.2\% & 17.2\% & 10.8\% & 16.8\% & 100.0\% \\
\hline & & \% within Educational Qualification & 87.1\% & 76.7\% & 79.6\% & 66.7\% & 80.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 182 & 113 & 62 & 193 & 550 \\
\hline & & \% within Examine the expiry date when buy medicines & 33.1\% & 20.5\% & 11.3\% & 35.1\% & 100.0\% \\
\hline & & \% within Educational Qualification & 11.2\% & 19.6\% & 17.8\% & 29.8\% & 17.2\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 28 & 21 & 9 & 23 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 34.6\% & 25.9\% & 11.1\% & 28.4\% & 100.0\% \\
\hline & & \% within Educational Qualification & 1.7\% & 3.6\% & 2.6\% & 3.5\% & 2.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(131.106(\mathrm{a})\) & & 6 \\
Likelihood Ratio & 125.621 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 8.81 .
Victim of expired drugs * Educational Qualification
Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(23.013(a)\) & 6 & .001 \\
Likelihood Ratio & 23.081 & 6 & .001 \\
Linear-by-Linear & 14.643 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 24.47 .
Check the MRP (Maximum Retail Price) before buying drugs * Educational Qualification
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{10}{*}{Check the MRP (Maximum Retail Price) before buying drugs} & Yes & Count & 1217 & 408 & 234 & 383 & 2242 \\
\hline & & \% within Check the & & & & & \\
\hline & & MRP (Maximum Retail Price) before & 54.3\% & 18.2\% & 10.4\% & 17.1\% & 100.0\% \\
\hline & & buying drugs & & & & & \\
\hline & & \% within Educational Qualification & 74.8\% & 70.8\% & 67.2\% & 59.1\% & 70.1\% \\
\hline & No & Count & 355 & 145 & 96 & 232 & 828 \\
\hline & & \% within Check the MRP (Maximum & 42.9\% & 17.5\% & & 28.0\% & 100.0\% \\
\hline & & Retail Price) before buying drugs & 42.9\% & 17.5\% & 11.6\% & 28.0\% & 100.0\% \\
\hline & & \% within Educational Qualification & 21.8\% & 25.2\% & 27.6\% & 35.8\% & 25.9\% \\
\hline & No opinion & Count & 56 & 23 & 18 & 33 & 130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within Check the MRP (Maximum Retail Price) before buying drugs \% within Educational Qualification & \(43.1 \%\)
\(3.4 \%\) & \(17.7 \%\)
4.0\% & \(13.8 \%\)
5.2\% & \(25.4 \%\)
\(5.1 \%\) & 100.0\% \\
\hline & & 1628 & 576 & 348 & 648 & 3200 \\
\hline & \% within Check the MRP (Maximum Retail Price) before buying drugs & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(56.575(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 54.897 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.14.

\section*{Charged the MRP of buying drugs * Educational Qualification}

Crosstab
\begin{tabular}{|l|l|r|r|r|r|c|}
\hline & & \multicolumn{4}{|c|}{ Educational Qualification } & \\
\cline { 3 - 6 } & & Graduate & HSc & SSLC & Below SSLC & Total \\
\hline Charged the MRP & Above MRP & Count & 138 & 52 & 34 & 49
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(5.010(\mathrm{a})\) & 6 & .542 \\
Likelihood Ratio & 5.119 & 6 & .529 \\
Linear-by-Linear & 1.351 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 29.69.
Practice Self-medication * Educational Qualification
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Crosstab} \\
\hline & & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Practice Selfmedication} & \multirow[t]{3}{*}{Yes} & Count & \multirow[t]{2}{*}{539
\(46.0 \%\)} & 217 & 136 & 281 & \multirow[t]{2}{*}{\[
\begin{array}{r}
1173 \\
100.0 \%
\end{array}
\]} \\
\hline & & \begin{tabular}{l}
\% within Practice \\
Self-medication
\end{tabular} & & 18.5\% & 11.6\% & 24.0\% & \\
\hline & & \% within Educational Qualification & 33.1\% & 37.7\% & 39.1\% & 43.4\% & 36.7\% \\
\hline & \multirow[t]{2}{*}{No} & Count & 977 & 305 & 191 & 329 & 1802 \\
\hline & & \% within Practice Self-medication & 54.2\% & 16.9\% & 10.6\% & 18.3\% & 100.0\% \\
\hline & \multirow{3}{*}{No opinion} & \multirow[t]{3}{*}{\begin{tabular}{l}
\% within \\
Educational \\
Qualification \\
Count \\
\% within Practice \\
Self-medication
\end{tabular}} & 60.0\% & 53.0\% & 54.9\% & 50.8\% & 56.3\% \\
\hline & & & 112 & 54 & 21 & 38 & 225 \\
\hline & & & 49.8\% & 24.0\% & 9.3\% & 16.9\% & 100.0\% \\
\hline & & \% within Educational & 6.9\% & 9.4\% & 6.0\% & 5.9\% & 7.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Qualification Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Practice Self-medication & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(29.338(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 28.803 & 6 & .000 \\
Linear-by-Linear & 17.959 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 24.47.

\section*{Come across counterfeit medicines * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{11}{*}{Come across counterfeit medicines} & Yes & Count & 98 & 36 & 15 & 14 & 163 \\
\hline & & \% within Come & & & & & \\
\hline & & across counterfeit medicines & 60.1\% & 22.1\% & 9.2\% & 8.6\% & 100.0\% \\
\hline & & \(\%\) within & & & & & \\
\hline & & Educational & 6.0\% & 6.3\% & 4.3\% & 2.2\% & 5.1\% \\
\hline & & Qualification & & & & & \\
\hline & No & Count & 1329 & 454 & 290 & 528 & 2601 \\
\hline & & \% within Come across counterfeit medicines \(\%\) within & 51.1\% & 17.5\% & 11.1\% & 20.3\% & 100.0\% \\
\hline & & Educational Qualification & 81.6\% & 78.8\% & 83.3\% & 81.5\% & 81.3\% \\
\hline & No opinion & Count & 201 & 86 & 43 & 106 & 436 \\
\hline & & \% within Come across counterfeit medicines & 46.1\% & 19.7\% & 9.9\% & 24.3\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 22.892(a) & 6 & . 001 \\
\hline Likelihood Ratio & 25.557 & 6 & . 000 \\
\hline Linear-by-Linear & 14.093 & 1 & . 000 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline
\end{tabular}

\section*{If victim of expired drugs, complain to officials * Educational Qualification}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(3.441(\mathrm{a})\) & 6 & .752 \\
Likelihood Ratio & 3.577 & 6 & .734 \\
Linear-by-Linear & .702 & & 1
\end{tabular}
a 1 cells (\(8.3 \%\)) have expected count less than 5 . The minimum expected count is 4.69

\section*{Satisfaction level of complaints * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Satisfaction level of complaints} & \multirow[t]{3}{*}{Satisfactory} & Count \% within Satisfaction & \multirow[t]{2}{*}{\[
\begin{array}{r}
14 \\
48.3 \%
\end{array}
\]} & 6 & 5 & \multirow[t]{2}{*}{\[
\begin{array}{r}
4 \\
13.8 \%
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
29 \\
100.0 \%
\end{array}
\]} \\
\hline & & \% within Satisfaction level of complaints & & 20.7\% & 17.2\% & & \\
\hline & & \% within Educational Qualification & 10.5\% & 14.6\% & 31.3\% & 11.4\% & 12.9\% \\
\hline & \multirow[t]{2}{*}{Not Satisfactory} & Count & 62 & 17 & 5 & 17 & 101 \\
\hline & & \% within Satisfaction level of complaints & \[
61.4 \%
\] & & & & 100.0\% \\
\hline & \multirow{3}{*}{No Response} & \multirow[t]{2}{*}{\% within Educational Qualification Count} & 46.6\% & 41.5\% & 31.3\% & 48.6\% & 44.9\% \\
\hline & & & 57 & 18 & 6 & 14 & 95 \\
\hline & & \% within Satisfaction level of complaints & 60.0\% & 18.9\% & 6.3\% & 14.7\% & 100.0\% \\
\hline & & \multirow[t]{2}{*}{\% within Educational Qualification Count} & 42.9\% & 43.9\% & 37.5\% & 40.0\% & 42.2\% \\
\hline \multirow[t]{3}{*}{Total} & & & \multirow[t]{2}{*}{\[
\begin{array}{r}
133 \\
59.1 \%
\end{array}
\]} & \multirow[t]{2}{*}{\[
18.2 \%
\]} & \multirow[t]{2}{*}{\[
\begin{array}{r}
16 \\
7.1 \%
\end{array}
\]} & & 225 \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
\% within Satisfaction level of complaints \\
\% within \\
Educational \\
Qualification
\end{tabular}} & & & & \[
15.6 \%
\] & 100.0\% \\
\hline & & & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}

\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(6.046(\mathrm{a})\) & 6 & .418 \\
Likelihood Ratio & 4.961 & 6 & .549 \\
Linear-by-Linear & .517 & 1 & .472 \\
Association & 225 & & \\
N of Valid Cases & &
\end{tabular}
a 2 cells (\(16.7 \%\)) have expected count less than 5 . The minimum expected count is 2.06 .

\section*{Insist for bills when buy medicines * Educational Qualification}

Crosstab

\begin{tabular}{|l|l|l|l|l|l|}
\begin{tabular}{l}
\% within Insist for \\
bills when buy \\
medicines \\
\% within \\
Educational \\
Qualification
\end{tabular} & \(50.9 \%\) & \(18.0 \%\) & \(10.9 \%\) & \(20.3 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(88.308(\mathrm{a})\) & & 6 \\
\hline Likelihood Ratio & 85.468 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 11.53 .

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Educational Qualification

Crosstab
\begin{tabular}{|l|l|l|r|r|r|r|c|}
\hline & & \multicolumn{4}{|c|}{ Educational Qualification } & \\
\cline { 3 - 7 } & & & Graduate & HSc & SSLC & Below SSLC & Total \\
\hline When the particular & Yes & Count & 1121 & 360 & 209 & 382 & 2072
\end{tabular}
brand of medicine
looking for is not
available, asked by
the Pharmacies to
buy alternative
company drugs
having the same
components
\% within When the particular brand of medicine looking for is not available asked by the
Pharmacies to buy alternative company drugs having the same components \% within Educational Qualification
Count
\% within When the particular brand of medicine looking for is not available asked by the Pharmacies to buy alternative company drugs having the same components \% within Educational Qualification

Count
\% within When the particular brand of medicine looking for is not available, asked by the
Pharmacies to buy alternative company drugs having the same components \% within Educational Qualification
Count

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(27.905(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 27.793 & 6 & .000 \\
Linear-by-Linear & 18.543 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.79.

\section*{Ready to buy as advised by the Pharmacy * Educational Qualification}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline Ready to buy as advised by the & Yes & Count & 677 & 251 & 135 & 296 & 1359 \\
\hline Pharmacy & & \% within Ready to buy as advised by the Pharmacy & 49.8\% & 18.5\% & 9.9\% & 21.8\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(6.645(\mathrm{a})\) & 6 & .355 \\
Likelihood Ratio & 6.560 & 6 & .363 \\
Linear-by-Linear & .918 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 19.79.

\section*{Bought medicines through online * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{9}{*}{Bought medicines through online} & \multirow[t]{3}{*}{Yes} & Count & 239 & & 26 & 55 & \multirow[t]{2}{*}{\[
\begin{array}{r}
375 \\
100.0 \%
\end{array}
\]} \\
\hline & & \begin{tabular}{l}
\% within Bought medicines through online \\
\% within
\end{tabular} & 63.7\% & 14.7\% & 6.9\% & 14.7\% & \\
\hline & & Educational Qualification & 14.7\% & 9.5\% & 7.5\% & 8.5\% & 11.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1356 & 492 & 305 & 560 & 2713 \\
\hline & & \% within Bought medicines through online \% within & 50.0\% & 18.1\% & 11.2\% & 20.6\% & 100.0\% \\
\hline & & Educational Qualification & 83.3\% & 85.4\% & 87.6\% & 86.4\% & 84.8\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 33 & 29 & 17 & 33 & 112 \\
\hline & & \% within Bought medicines through online \% within & 29.5\% & 25.9\% & 15.2\% & 29.5\% & 100.0\% \\
\hline & & Educational Qualification & 2.0\% & 5.0\% & 4.9\% & 5.1\% & 3.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Bought medicines through online \% within & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(47.198(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 48.413 & 6 & .000 \\
Linear-by-Linear & 35.834 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 12.18.

\section*{Look into the dosage level prescribed in the drugs when buy medicine * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{13}{*}{Look into the dosage level prescribed in the drugs when buy medicine} & Yes & Count & 1008 & 328 & 196 & 273 & 1805 \\
\hline & & \% within Look into the dosage level & & & & & \\
\hline & & prescribed in the & 55.8\% & 18.2\% & 10.9\% & 15.1\% & 100.0\% \\
\hline & & drugs when buy & & & & & \\
\hline & & medicine & & & & & \\
\hline & & \% within Educational Qualification & 61.9\% & 56.9\% & 56.3\% & 42.1\% & 56.4\% \\
\hline & No & Count & 544 & 219 & 134 & 339 & 1236 \\
\hline & & \% within Look into the dosage level & & & & & \\
\hline & & prescribed in the & 44.0\% & 17.7\% & 10.8\% & 27.4\% & 100.0\% \\
\hline & & drugs when buy medicine & & & & & \\
\hline & & \% within Educational & & & & & \\
\hline & & Qualification & 33.4\% & 38.0\% & 38.5\% & 52.3\% & 38.6\% \\
\hline & No opinion & Count & 76 & 29 & 18 & 36 & 159 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within Look into the dosage level prescribed in the drugs when buy medicine \% within Educational Qualification & \(47.8 \%\)

\(4.7 \%\) & \(18.2 \%\)

\(5.0 \%\) & \(11.3 \%\)

\(5.2 \%\) & \(22.6 \%\)
\(5.6 \%\) & 100.0\%

5.0\% \\
\hline & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & \% within Look into the dosage level prescribed in the drugs when buy medicine & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Value }\end{array}\)} & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(75.924(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 75.295 & 6 & .000 \\
Linear-by-Linear & 52.070 & & 1
\end{tabular}\() .000\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expec
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 17.29.

\section*{Aware of Schedule H - drug * Educational Qualification}

Crosstab
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & \multicolumn{4}{|c|}{ Educational Qualification } & \\
\cline { 3 - 5 } & & Graduate & HSc & SSLC & Below SSLC & Total \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{Aware of Schedule H-drug} & Yes & Count & 243 & 58 & 28 & 33 & 362 \\
\hline & & \% within Aware of Schedule H - drug & 67.1\% & 16.0\% & 7.7\% & 9.1\% & 100.0\% \\
\hline & & \% within Educational Qualification & 14.9\% & 10.1\% & 8.0\% & 5.1\% & 11.3\% \\
\hline & No & Count & 1092 & 424 & 261 & 508 & 2285 \\
\hline & & \% within Aware of Schedule H-drug & 47.8\% & 18.6\% & 11.4\% & 22.2\% & 100.0\% \\
\hline & & \% within Educational Qualification & 67.1\% & 73.6\% & 75.0\% & 78.4\% & 71.4\% \\
\hline & No opinion & Count & 293 & 94 & 59 & 107 & 553 \\
\hline & & \% within Aware of Schedule H-drug & 53.0\% & 17.0\% & 10.7\% & 19.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 18.0\% & 16.3\% & 17.0\% & 16.5\% & 17.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & & \% within Aware of Schedule H-drug & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(55.788(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 60.170 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 39.37.

Got Schedule H - drug without medical prescription * Educational Qualification
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Crosstab} \\
\hline & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{18}{*}{\begin{tabular}{l}
Got Schedule H- \\
Yes drug without medical prescription \\
No \\
No opinion
\end{tabular}} & Count & 103 & 26 & 18 & 21 & 168 \\
\hline & \% within Got & & & & & \\
\hline & Schedule H-drug without medical & 61.3\% & 15.5\% & 10.7\% & 12.5\% & 100.0\% \\
\hline & prescription & & & & & \\
\hline & Educational & 6.3\% & 4.5\% & 5.2\% & 3.2\% & 5.3\% \\
\hline & Qualification & & & & & \\
\hline & Count & 999 & 377 & 226 & 455 & 2057 \\
\hline & \% within Got & & & & & \\
\hline & Schedule H - drug without medical prescription & 48.6\% & 18.3\% & 11.0\% & 22.1\% & 100.0\% \\
\hline & Educational & 61.4\% & 65.5\% & 64.9\% & 70.2\% & 64.3\% \\
\hline & Qualification & & & & & \\
\hline & Count & 526 & 173 & 104 & 172 & 975 \\
\hline & \% within Got & & & & & \\
\hline & Schedule H-drug without medical & 53.9\% & 17.7\% & 10.7\% & 17.6\% & 100.0\% \\
\hline & prescription & & & & & \\
\hline & \% within & & & & & \\
\hline & Educational & 32.3\% & 30.0\% & 29.9\% & 26.5\% & 30.5\% \\
\hline & Qualification & & & & & \\
\hline \multirow[t]{4}{*}{Total} & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline & \% within Got & & & & & \\
\hline & Schedule H - drug without medical & 50.9\% & 18.0\% & 10.9\% & 20.3\% & 100.0\% \\
\hline & prescription & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within \\
Educational \\
Qualification
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(20.192(\mathrm{a})\) & 6 & .003 \\
Likelihood Ratio & 20.838 & 6 & .002 \\
Linear-by-Linear & 1.136 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 18.27.

\section*{Affected due to over dosage of drug * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & ducationa & ualification & & \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & Total \\
\hline Affected due to & Yes & Count & 233 & 73 & 49 & 85 & 440 \\
\hline over dosage of drug & & \% within Affected due to over & 53.0\% & 16.6\% & 11.1\% & 19.3\% & 100.0\% \\
\hline & & dosage of drug & & & & & \\
\hline & No & Count & 1239 & 439 & 273 & 492 & 2443 \\
\hline & & \% within Affected due to over dosage of drug & 50.7\% & 18.0\% & 11.2\% & 20.1\% & 100.0\% \\
\hline & & Educational & 76.1\% & 76.2\% & 78.4\% & 75.9\% & 76.3\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(5.127(\mathrm{a})\) & 6 & .528 \\
Likelihood Ratio & 5.277 & 6 & .509 \\
Linear-by-Linear & .659 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 34.47 .

\section*{If yes, mode of get the drug * Educational Qualification}

\section*{Crosstab}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & On prescription & Count & 109 & 38 & 26 & 23 & 196 \\
\hline & & \% within If yes, mode of get the drug & 55.6\% & 19.4\% & 13.3\% & 11.7\% & 100.0\% \\
\hline & & \% within Educational Qualification & 46.8\% & 52.1\% & 53.1\% & 27.1\% & 44.5\% \\
\hline & Overcounter in & Count & 56 & 23 & 15 & 27 & 121 \\
\hline & pharmacy & \% within If yes, mode of get the drug & 46.3\% & 19.0\% & 12.4\% & 22.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 24.0\% & 31.5\% & 30.6\% & 31.8\% & 27.5\% \\
\hline & Self medication & Count & 68 & 12 & 8 & 35 & 123 \\
\hline & & \% within If yes, mode of get the drug & 55.3\% & 9.8\% & 6.5\% & 28.5\% & 100.0\% \\
\hline & & \% within Educational Qualification & 29.2\% & 16.4\% & 16.3\% & 41.2\% & 28.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 233 & 73 & 49 & 85 & 440 \\
\hline & & \% within If yes, mode of get the drug & 53.0\% & 16.6\% & 11.1\% & 19.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(21.272(\mathrm{a})\) & 6 & .002 \\
Likelihood Ratio & 22.471 & 6 & .001 \\
Linear-by-Linear & 4.594 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 13.48 .

\section*{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Educational Qualification}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{18}{*}{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines} & \multirow[t]{7}{*}{Yes} & Count & 901 & 252 & 167 & 192 & 1512 \\
\hline & & \% within Aware of the existing laws for & & & & & \\
\hline & & protecting the & 59.6\% & 16.7\% & & & 100.0\% \\
\hline & & Consumer in case of counterfeit & 59.6\% & 16.7\% & 11.0\% & 12.7\% & 100.0\% \\
\hline & & medicines & & & & & \\
\hline & & \% within & & & & & \\
\hline & & Educational Qualification & 55.3\% & 43.8\% & 48.0\% & 29.6\% & 47.3\% \\
\hline & \multirow[t]{5}{*}{No} & Count & 603 & 250 & 155 & 385 & 1393 \\
\hline & & \% within Aware of the existing laws for protecting the & 43.3\% & 17.9\% & 11.1\% & 27.6\% & 100.0\% \\
\hline & & Consumer in case of counterfeit medicines & 43.3\% & 17.9\% & 11.1\% & 27.6\% & 100.0\% \\
\hline & & Educational & 37.0\% & 43.4\% & 44.5\% & 59.4\% & 43.5\% \\
\hline & & Qualification & & & & & \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 124 & 74 & 26 & 71 & 295 \\
\hline & & \% within Aware of the existing laws for protecting the & 42.0\% & 25.1\% & 8.8\% & 24.1\% & 100.0\% \\
\hline & & Consumer in case of counterfeit medicines & 42.0\% & 25.1\% & 8.8\% & 24.1\% & 100.0\% \\
\hline & & \% within & & & & & \\
\hline & & Educational & 7.6\% & 12.8\% & 7.5\% & 11.0\% & 9.2\% \\
\hline & & Qualification & & & & & \\
\hline \multicolumn{2}{|l|}{Total} & Count & 1628 & 576 & 348 & 648 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \% within Aware of the existing laws for protecting the Consumer in case of counterfeit medicines \% within Educational Qualification & \[
\begin{aligned}
& 50.9 \% \\
& 100.0 \%
\end{aligned}
\] & \[
\begin{array}{r}
18.0 \% \\
100.0 \%
\end{array}
\] & \[
\begin{aligned}
& 10.9 \% \\
& 100.0 \%
\end{aligned}
\] & \[
\begin{aligned}
& 20.3 \% \\
& 100.0 \%
\end{aligned}
\] & \[
\begin{aligned}
& 100.0 \% \\
& 100.0 \%
\end{aligned}
\] \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(136.115(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 137.847 & 6 & .000 \\
Linear-by-Linear & 83.397 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 32.08 .
Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Educational Qualification

Crosstab
\begin{tabular}{|l|l|r|r|r|r|r|}
\hline & & \multicolumn{4}{|c|}{ Educational Qualification } & \\
\cline { 3 - 6 } & & & Graduate & HSc & SSLC & Below SSLC
\end{tabular} Total \begin{tabular}{|l|r|r|}
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(159.794(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 158.663 & 6 & .000 \\
Linear-by-Linear & 126.749 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 23.27 .
If yes, filled a case in the Consumer Court * Educational Qualification
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline \multirow[t]{7}{*}{If yes, filled a case in the Consumer Court} & Yes & Count & 41 & 17 & 8 & 6 & 72 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 56.9\% & 23.6\% & 11.1\% & 8.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 3.5\% & 5.0\% & 4.2\% & 2.1\% & 3.6\% \\
\hline & No & Count & 1077 & 308 & 174 & 269 & 1828 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 58.9\% & 16.8\% & 9.5\% & 14.7\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Educational Qualification
\end{tabular} & 92.8\% & 90.3\% & 90.6\% & 94.4\% & 92.4\% \\
\hline & No opinion & Count & 42 & 16 & 10 & 10 & 78 \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Total} & \% within If yes, filled a case in the Consumer Court & 53.8\% & 20.5\% & 12.8\% & 12.8\% & 100.0\% \\
\hline & \% within Educational Qualification Count & \begin{tabular}{l}
\[
3.6 \%
\] \\
1160
\end{tabular} & \(4.7 \%\)
341 & \(5.2 \%\)
192 & \(3.5 \%\)
285 & \(3.9 \%\)
1978 \\
\hline & \% within If yes, filled a case in the Consumer Court & 58.6\% & 17.2\% & 9.7\% & 14.4\% & 100.0\% \\
\hline & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(5.799(\mathrm{a})\) & 6 & .446 \\
Likelihood Ratio & 5.864 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 6.99 .
If files case, Consumer Court able to redress grievance * Educational Qualification
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & \multicolumn{4}{|c|}{Educational Qualification} & \multirow[b]{2}{*}{Total} \\
\hline & & & Graduate & HSc & SSLC & Below SSLC & \\
\hline If files case, & Yes & Count & 30 & 12 & 6 & 3 & 51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{Consumer Court able to redress grievance} & & \(\%\) within If files case, Consumer Court able to redress grievance \% within Educational Qualification & 58.8\%
73.2\% & 23.5\%

\(70.6 \%\) & \(11.8 \%\)
\(75.0 \%\) & \(5.9 \%\)
\(50.0 \%\) & \(100.0 \%\)
\(70.8 \%\) \\
\hline & No & Count & 6 & 3 & 2 & 1 & 12 \\
\hline & & \% within If files case, Consumer Court able to redress grievance \% within Educational Qualification & 50.0\%
14.6\% & \(25.0 \%\)
17.6\% & \(16.7 \%\)
25.0\% & \(8.3 \%\)
\(16.7 \%\) & \(100.0 \%\)
\(16.7 \%\) \\
\hline & No opinion & Count & 5 & 2 & 0 & 2 & 9 \\
\hline & & \(\%\) within If files case, Consumer Court able to redress grievance \% within Educational Qualification & 55.6\%
12.2\% & \(22.2 \%\)
\(11.8 \%\) & \(.0 \%\)
\(.0 \%\) & \(22.2 \%\)
\(33.3 \%\) & \(100.0 \%\)
\(12.5 \%\) \\
\hline \multirow[t]{3}{*}{Total} & & Count & 41 & 17 & 8 & 6 & 72 \\
\hline & & \(\%\) within If files case, Consumer Court able to redress grievance & 56.9\% & 23.6\% & 11.1\% & 8.3\% & 100.0\% \\
\hline & & \% within Educational Qualification & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.958(\mathrm{a})\) & 6 & .682 \\
Likelihood Ratio & 4.299 & 6 & .636 \\
Linear-by-Linear & .675 & & 1
\end{tabular}
\(\left|\begin{array}{l}\text { N of Valid Cases } \\
\text { a } 7 \text { cells }(58.3 \%)\end{array}\right|\)\begin{tabular}{l}
have expected count less than 5. The minimum expected count is .75.
\end{tabular}

\section*{Crosstabs}

\section*{Age Group in years * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{10}{*}{Age Group in years} & \multirow[t]{4}{*}{18-40} & Count & 888 & 1411 & 2299 \\
\hline & & \% within Age & & & \\
\hline & & Group in years & 38.6\% & 61.4\% & 100.0\% \\
\hline & & \% within Location & 70.8\% & 72.5\% & 71.8\% \\
\hline & \multirow[t]{3}{*}{41-60} & Count & 305 & 443 & 748 \\
\hline & & \% within Age Group in years & 40.8\% & 59.2\% & 100.0\% \\
\hline & & \% within Location & 24.3\% & 22.8\% & 23.4\% \\
\hline & \multirow[t]{3}{*}{Above 60} & Count & 62 & 91 & 153 \\
\hline & & \% within Age Group in years & 40.5\% & 59.5\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 4.9\% & 4.7\% & 4.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Age Group in years & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.209(\mathrm{a})\) & 2 & .546 \\
Likelihood Ratio & 1.206 & & 2
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 60.00 .

\section*{Gender * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{6}{*}{Gender} & \multirow[t]{3}{*}{Male} & Count & 689 & 1049 & 1738 \\
\hline & & \% within Gender & 39.6\% & 60.4\% & 100.0\% \\
\hline & & \% within Location & 54.9\% & 53.9\% & 54.3\% \\
\hline & \multirow[t]{6}{*}{Female} & Count & 566 & 896 & 1462 \\
\hline & & \% within Gender & 38.7\% & 61.3\% & 100.0\% \\
\hline & & \% within Location & 45.1\% & 46.1\% & 45.7\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Gender & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(.288(\mathrm{~b})\) & 1 & .592 & & \\
Continuity & .250 & & 1 & .617 & \\
Correction(a) & .288 & & 1 & .592 & \\
Likelihood Ratio & & & & & \\
Fisher's Exact Test & .288 & 1 & .592 & & .611 \\
Linear-by-Linear & 3200 & & & & \\
Association & & & & \\
N of Valid Cases & & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 573.38 .

\section*{Monthly Income * Location}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{8}{*}{Monthly Income} & \multirow[t]{3}{*}{Upto 10000} & Count & 633 & 739 & 1372 \\
\hline & & \% within Monthly Income & 46.1\% & 53.9\% & 100.0\% \\
\hline & & \% within Location & 50.4\% & 38.0\% & 42.9\% \\
\hline & \multirow[t]{3}{*}{10001-20000} & Count & 337 & 484 & 821 \\
\hline & & \% within Monthly Income & 41.0\% & 59.0\% & 100.0\% \\
\hline & & \% within Location & 26.9\% & 24.9\% & 25.7\% \\
\hline & \multirow[t]{2}{*}{20001-30000} & Count & 218 & 459 & 677 \\
\hline & & \% within Monthly Income & 32.2\% & 67.8\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{Above 30000} & \% within Location Count & \(17.4 \%\)
67 & \(23.6 \%\)
263 & \(21.2 \%\)
330 \\
\hline & & \% within Monthly Income & 20.3\% & 79.7\% & 100.0\% \\
\hline & & \% within Location & 5.3\% & 13.5\% & 10.3\% \\
\hline & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Monthly Income & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(92.220(\mathrm{a})\) & & 3 \\
\hline Likelihood Ratio & 96.864 & 3 & .000 \\
Linear-by-Linear & 88.933 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 129.42.

\section*{Amount spent family on Health and Medicines per month * Location}

Crosstab

family on Health
and Medicines per
month

1001-2000

2001-3000

3001-5000

Above 5000

Total

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
\((2\)-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(15.106(\mathrm{a})\) & 4 & .004 \\
Likelihood Ratio & 15.629 & 4 & .004 \\
Linear-by-Linear & 6.763 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 61.18 .
Marital Status * Location

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{6}{*}{Marital Status} & \multirow[t]{3}{*}{Married} & Count & 751 & 1168 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 39.1\% & 60.9\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 59.8\% & 60.1\% & 60.0\% \\
\hline & \multirow[t]{4}{*}{Single} & Count & 504 & 777 & 1281 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 39.3\% & 60.7\% & 100.0\% \\
\hline & & \% within Location & 40.2\% & 39.9\% & 40.0\% \\
\hline \multirow[t]{2}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & & & & 29 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within \\
Marital Status \\
\% within \\
Location
\end{tabular} & 39.2\% & 60.8\% & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) & Exact Sig. (2-sided) & \begin{tabular}{l}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & .014(b) & 1 & . 905 & & \\
\hline Continuity & . 007 & 1 & . 935 & & \\
\hline Correction(a) & . 007 & 1 & . 935 & & \\
\hline Likelihood Ratio & . 014 & 1 & . 905 & & \\
\hline Fisher's Exact Test & & & & . 912 & .467 \\
\hline Linear-by-Linear Association & . 014 & 1 & . 905 & & \\
\hline N of Valid Cases & 3200 & & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 502.39

\section*{Educational Qualification * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{7}{*}{Educational Qualification} & \multirow[t]{6}{*}{Graduate} & Count & 592 & 1036 & 1628 \\
\hline & & \% within & & & \\
\hline & & Educational & 36.4\% & 63.6\% & 100.0\% \\
\hline & & Qualification & & & \\
\hline & & \% within & 47.2\% & 53.3\% & 50.9\% \\
\hline & & Location & & & \\
\hline & HSc & Count & 224 & 352 & 576 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(15.558(\mathrm{a})\) & 3 & .001 \\
Likelihood Ratio & 15.481 & 3 & .001 \\
Linear-by-Linear & 15.213 & & 1
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 136.48 .
Buy medicines * Location

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{12}{*}{Buy medicines} & \multirow[t]{3}{*}{Doctor's Prescription} & Count & 1091 & 1694 & 2785 \\
\hline & & \% within Buy medicines & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 86.9\% & 87.1\% & 87.0\% \\
\hline & \multirow[t]{3}{*}{Advice of Family/ Friends} & Count & 34 & 76 & 110 \\
\hline & & \% within Buy medicines & 30.9\% & 69.1\% & 100.0\% \\
\hline & & \% within Location & 2.7\% & 3.9\% & 3.4\% \\
\hline & \multirow[t]{3}{*}{Suggestion of the Pharmacist} & Count & 94 & 97 & 191 \\
\hline & & \% within Buy medicines & 49.2\% & 50.8\% & 100.0\% \\
\hline & & \% Within Location & 7.5\% & 5.0\% & 6.0\% \\
\hline & \multirow[t]{6}{*}{Others} & Count & 36 & 78 & 114 \\
\hline & & \% within Buy medicines & 31.6\% & 68.4\% & 100.0\% \\
\hline & & \% within Location & 2.9\% & 4.0\% & 3.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Buy medicines & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|rr|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(13.986(\mathrm{a})\) & 3 & .003 \\
Likelihood Ratio & 13.985 & 3 & .003 \\
Linear-by-Linear & .021 & 1 & .884
\end{tabular}

Association
\(N\) of Valid Cases

a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 43.14 .

\section*{Family members go to Clinic normally * Location}
\begin{tabular}{|ll|l|r|r|r|}
\hline
\end{tabular} \begin{tabular}{|lll|l|}
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{c}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(2-sided)
\end{tabular} & \begin{tabular}{c}
Exact Sig. \\
(1-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(66.934(\mathrm{~b})\) & 1 & .000 & & \\
Continuity & 66.330 & 1 & .000 & & \\
Correction(a) & & & & &
\end{tabular}
\begin{tabular}{|l|r|r|r|r|l|l|}
Likelihood Ratio & 66.642 & 1 & .000 & .000 & .000 \\
Fisher's Exact Test & & & & \\
Linear-by-Linear & 66.913 & 1 & .000 & \\
Association & 3200 & & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a Computed only for a \(2 \times 2\) table
b 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 496.51

\section*{Reason for go to a Private Doctor / Clinic * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 378 & 722 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 34.4\% & 65.6\% & 100.0\% \\
\hline & & \% within Location & 58.3\% & 56.1\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 139 & 365 & 504 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 27.6\% & 72.4\% & 100.0\% \\
\hline & & \% within Location & 21.5\% & 28.4\% & 26.1\% \\
\hline & \multirow[t]{3}{*}{No Govt.Hospital nearby} & Count & 131 & 199 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 39.7\% & 60.3\% & 100.0\% \\
\hline & & \% within Location & 20.2\% & 15.5\% & 17.1\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 648 & 1286 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 33.5\% & 66.5\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(13.986(\mathrm{a})\) & 2 & .001 \\
Likelihood Ratio & 14.100 & 2 & .001 \\
Linear-by-Linear & .483 & 1 & .487 \\
Association & 1934 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 110.57 .
Heard of Generic Drugs * Location
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{14}{*}{Heard of Generic Drugs} & \multirow[t]{7}{*}{Yes} & Count & 309 & 528 & 837 \\
\hline & & \% within & & & \\
\hline & & Heard of & 36.9\% & & 100.0\% \\
\hline & & Generic & 36.9\% & 63.1\% & \\
\hline & & Drugs & & & \\
\hline & & \% within & 24.6\% & 27.1\% & 26.2\% \\
\hline & & Location & 24.6\% & 27.1\% & 26.2\% \\
\hline & \multirow[t]{6}{*}{No} & Count & 800 & 1173 & 1973 \\
\hline & & \% within & & & \\
\hline & & Heard of & 40.5\% & 59.5\% & 100.0\% \\
\hline & & Drugs & & & \\
\hline & & \% within & 63.7\% & 60.3\% & 61.7\% \\
\hline & & Location & 63.7\% & 60.3\% & \\
\hline & No opinion & Count & 146 & 244 & 390 \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|}
& \begin{tabular}{l}
\% within \\
Heard of \\
Generic
\end{tabular} & \(37.4 \%\) & \(62.6 \%\) & \(100.0 \%\) \\
Total & \begin{tabular}{l}
Drugs \\
\% within
\end{tabular} & \(11.6 \%\) & \(12.5 \%\) & \(12.2 \%\) \\
& \begin{tabular}{l}
Location \\
Count \\
\% within \\
Heard of \\
Generic
\end{tabular} & 1255 & 1945 & 3200 \\
\hline \begin{tabular}{l}
Drugs \\
\% within \\
Location
\end{tabular} & \(100.2 \%\) & \(60.8 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(3.840(\mathrm{a})\) & 2 & .147 \\
Likelihood Ratio & 3.852 & 2 & .146 \\
Linear-by-Linear & .546 & 1 & .460 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 152.95 .
Chronic problems for which family members take medicines regularly * Location

Crosstab
\begin{tabular}{|l|l|l|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{ Location } & \\
\cline { 4 - 5 } & & \multirow{2}{|c|}{ Rural } & Urban & Total \\
\hline Chronic problems for \(B P /\) Hypertension & Count & 167 & 186 & 353
\end{tabular}
which family members take
medicines regularly
\begin{tabular}{|c|c|c|c|c|}
\hline & \% within Chronic problems for which family members take medicines regularly & 47.3\% & 52.7\% & 100.0\% \\
\hline & \% within Location & 13.3\% & 9.6\% & 11.0\% \\
\hline \multirow[t]{3}{*}{Heart Problems} & Count & 39 & 63 & 102 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 38.2\% & 61.8\% & 100.0\% \\
\hline & \% within Location & 3.1\% & 3.2\% & 3.2\% \\
\hline \multirow[t]{3}{*}{Diabetes} & Count & 124 & 221 & 345 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 35.9\% & 64.1\% & 100.0\% \\
\hline & \% within Location & 9.9\% & 11.4\% & 10.8\% \\
\hline \multirow[t]{3}{*}{Stomach Ailments} & Count & 121 & 155 & 276 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 43.8\% & 56.2\% & 100.0\% \\
\hline & \% within Location & 9.6\% & 8.0\% & 8.6\% \\
\hline \multirow[t]{3}{*}{Arthritis} & Count & 14 & 20 & 34 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 41.2\% & 58.8\% & 100.0\% \\
\hline & \% within Location & 1.1\% & 1.0\% & 1.1\% \\
\hline \multirow[t]{2}{*}{Others} & Count & 790 & 1300 & 2090 \\
\hline & \% within Chronic problems for which family members take medicines regularly & 37.8\% & 62.2\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|}
Total & \begin{tabular}{l}
\% within Location \\
Count \\
\% within Chronic \\
problems for which \\
family members take \\
medicines regularly
\end{tabular} & \(39.2 \%\) & \(62.9 \%\) & \(66.8 \%\) \\
\hline \% within Location & 1255 & 1945 & \(60.3 \%\) & 3200 \\
& \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.582(\mathrm{a})\) & 5 & .008 \\
Likelihood Ratio & 15.390 & & 5
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 13.33.

\section*{Examine the expiry date when buy medicines * Location}

Crosstab
\begin{tabular}{|ll|l|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{ Location } & \\
\hline & & Rural & \multicolumn{1}{c|}{ Urban } & \multicolumn{1}{c|}{ Total } \\
\hline \(\begin{array}{lll}\text { Examine the expiry } \\
\text { date when buy } \\
\text { medicines }\end{array}\) & Yes & Count & 970 & 1599 & 2569 \\
& & \(\begin{array}{l}\text { \% within Examine } \\
\text { the expiry date when }\end{array}\) & \(37.8 \%\) & \(62.2 \%\) & \(100.0 \%\) \\
& buy medicines
\end{tabular}\()\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Total} & \multirow{8}{*}{No opinion} & \% within Examine the expiry date when buy medicines & 46.5\% & 53.5\% & 100.0\% \\
\hline & & \% within Location & 20.4\% & 15.1\% & 17.2\% \\
\hline & & Count & 29 & 52 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 35.8\% & 64.2\% & 100.0\% \\
\hline & & \% within Location & 2.3\% & 2.7\% & 2.5\% \\
\hline & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Examine the expiry date when buy medicines & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(15.082(\mathrm{a})\) & 2 & .001 \\
Likelihood Ratio & 14.876 & 2 & .001 \\
Linear-by-Linear & 7.082 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 31.77 .

\section*{Victim of expired drugs * Location}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{12}{*}{Victim of expired drugs} & Yes & Count & 107 & 118 & 225 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 47.6\% & 52.4\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 8.5\% & 6.1\% & 7.0\% \\
\hline & No & Count & 1055 & 1695 & 2750 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 38.4\% & 61.6\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 84.1\% & 87.1\% & 85.9\% \\
\hline & No opinion & Count & 93 & 132 & 225 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 41.3\% & 58.7\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 7.4\% & 6.8\% & 7.0\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within & & & \\
\hline & & Victim of expired drugs & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(7.826(\mathrm{a})\) & 2 & .020 \\
Likelihood Ratio & 7.696 & 2 & .021 \\
Linear-by-Linear & 1.827 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 88.24 .

Check the MRP (Maximum Retail Price) before buying drugs * Location
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{14}{*}{Check the MRP (Maximum Retail Price) before buying drugs} & \multirow[t]{5}{*}{Yes} & Count & 845 & 1397 & 2242 \\
\hline & & \% within Check the & & & \\
\hline & & MRP (Maximum
Retail Price) before & 37.7\% & 62.3\% & 100.0\% \\
\hline & & Retail Price) before buying drugs & & & \\
\hline & & \% within Location & 67.3\% & 71.8\% & 70.1\% \\
\hline & \multirow[t]{4}{*}{No} & Count & 354 & 474 & 828 \\
\hline & & \% within Check the MRP (Maximum & & & \\
\hline & & Retail Price) before buying drugs & 42.8\% & 57.2\% & 100.0\% \\
\hline & & \% within Location & 28.2\% & 24.4\% & 25.9\% \\
\hline & \multirow[t]{5}{*}{No opinion} & Count & 56 & 74 & 130 \\
\hline & & \% within Check the MRP (Maximum & & & \\
\hline & & Retail Price) before & 43.1\% & 56.9\% & 100.0\% \\
\hline & & buying drugs & & & \\
\hline & & \% within Location & 4.5\% & 3.8\% & 4.1\% \\
\hline \multirow[t]{5}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Check the & & & \\
\hline & & MRP (Maximum & 39.2\% & 60.8\% & 100.0\% \\
\hline & & Retail Price) before buying drugs & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|l|l|l|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(7.351(\mathrm{a})\) & 2 & .025 \\
Likelihood Ratio & 7.312 & 2 & .026 \\
Linear-by-Linear & 6.622 & 1 & .010 \\
Association & & & \\
N of Valid Cases & 3200 & & \\
\hline
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 50.98 .

\section*{Charged the MRP of buying drugs * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{Charged the MRP of buying drugs} & \multirow[t]{3}{*}{Above MRP} & Count & 110 & 163 & 273 \\
\hline & & \% within Charged the MRP of buying drugs & 40.3\% & 59.7\% & 100.0\% \\
\hline & & \% within Location & 8.8\% & 8.4\% & 8.5\% \\
\hline & \multirow[t]{3}{*}{Below MRP} & Count & 244 & 387 & 631 \\
\hline & & \% within Charged the MRP of buying drugs & 38.7\% & 61.3\% & 100.0\% \\
\hline & & \% within Location & 19.4\% & 19.9\% & 19.7\% \\
\hline & \multirow[t]{6}{*}{At MRP} & Count & 901 & 1395 & 2296 \\
\hline & & \% within Charged the MRP of buying drugs & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 71.8\% & 71.7\% & 71.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Charged the MRP of buying drugs & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & .213 (a) & 2 & .899 \\
Likelihood Ratio & .212 & 2 & .899 \\
Linear-by-Linear & .019 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 107.07.

\section*{Practice Self-medication * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{11}{*}{Practice Selfmedication} & \multirow[t]{5}{*}{Yes} & Count & 514 & 659 & 1173 \\
\hline & & \% within & & & \\
\hline & & Practice Selfmedication & 43.8\% & 56.2\% & 100.0\% \\
\hline & & \% within & 41.0\% & 33.9\% & 36.7\% \\
\hline & & Location
Count & 675 & 1127 & 1802 \\
\hline & \multirow{3}{*}{No} & \% within & & & \\
\hline & & Practice Selfmedication & 37.5\% & 62.5\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Location
\end{tabular} & 53.8\% & 57.9\% & 56.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 66 & 159 & 225 \\
\hline & & \begin{tabular}{l}
\% within \\
Practice Selfmedication
\end{tabular} & 29.3\% & 70.7\% & 100.0\% \\
\hline & & \% within & 5.3\% & 8.2\% & 7.0\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|}
Total & \begin{tabular}{l}
Location \\
Count \\
\% within \\
Practice Self- \\
medication \\
\% within \\
Location
\end{tabular} & 1255 & 1945 & 3200 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{rlr|}
& & \\
& Value & df
\end{tabular}} & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(21.981(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 22.227 & 2 & .000 \\
Linear-by-Linear & 21.801 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 88.24 .

\section*{Come across counterfeit medicines * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{7}{*}{Come across counterfeit medicines} & \multirow[t]{4}{*}{Yes} & Count & 84 & 79 & 163 \\
\hline & & \% within Come & & & \\
\hline & & across counterfeit medicines & 51.5\% & 48.5\% & 100.0\% \\
\hline & & \% within Location & 6.7\% & 4.1\% & 5.1\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 978 & 1623 & 2601 \\
\hline & & \% within Come across counterfeit & 37.6\% & 62.4\% & 100.0\% \\
\hline & & & 244 & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(17.886(a)\) & 2 & .000 \\
Likelihood Ratio & 17.573 & 2 & .000 \\
Linear-by-Linear & .027 & 1 & .869 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
& & &
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 63.93.

\section*{If victim of expired drugs, complain to officials * Location}

Crosstab
\begin{tabular}{|ll|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Location } & \\
\cline { 3 - 4 } & & Rural & Urban & Total \\
\hline If victim of expired \(\quad\) Drug Inspector & Count & 36 & 43 & 79
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{drugs, complain to officials} & & \% within If victim of expired drugs, complain to officials & 45.6\% & 54.4\% & 100.0\% \\
\hline & \multirow{4}{*}{State Drug Controller} & \% within Location & 33.6\% & 36.4\% & 35.1\% \\
\hline & & Count & 26 & 40 & 66 \\
\hline & & \% within If victim of expired drugs, complain to officials & 39.4\% & 60.6\% & 100.0\% \\
\hline & & \% within Location & 24.3\% & 33.9\% & 29.3\% \\
\hline & \multirow[t]{3}{*}{Others} & Count & 45 & 35 & 80 \\
\hline & & \% within If victim of expired drugs, complain to officials & 56.3\% & 43.8\% & 100.0\% \\
\hline & & \% within Location & 42.1\% & 29.7\% & 35.6\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 107 & 118 & 225 \\
\hline & & \% within If victim of expired drugs, complain to officials & 47.6\% & 52.4\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(4.312(\mathrm{a})\) & 2 & .116 \\
Likelihood Ratio & 4.329 & 2 & .115 \\
Linear-by-Linear & 1.824 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 31.39 .

\section*{Satisfaction level of complaints * Location}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{10}{*}{Satisfaction level of complaints} & \multirow[t]{4}{*}{Satisfactory} & Count & 15 & 14 & 29 \\
\hline & & \% within & & & \\
\hline & & Satisfaction level of complaints & 51.7\% & 48.3\% & 100.0\% \\
\hline & & \% within Location & 14.0\% & 11.9\% & 12.9\% \\
\hline & \multirow[t]{3}{*}{Not Satisfactory} & Count & 39 & 62 & 101 \\
\hline & & \begin{tabular}{l}
\% within \\
Satisfaction level of complaints
\end{tabular} & 38.6\% & 61.4\% & 100.0\% \\
\hline & & \% within Location & 36.4\% & 52.5\% & 44.9\% \\
\hline & \multirow[t]{3}{*}{No Response} & Count & 53 & 42 & 95 \\
\hline & & \begin{tabular}{l}
\% within \\
Satisfaction level of complaints
\end{tabular} & 55.8\% & 44.2\% & 100.0\% \\
\hline & & \% within Location & 49.5\% & 35.6\% & 42.2\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & 107 & 118 & 225 \\
\hline & & \% within & & & \\
\hline & & Satisfaction level of complaints & 47.6\% & 52.4\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(6.022(a)\) & 2 & .049 \\
Likelihood Ratio & 6.057 & 2 & .048 \\
Linear-by-Linear & 1.668 & 1 & .196 \\
Association & & &
\end{tabular}

Insist for bills when buy medicines * Location
Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{Insist for bills when buy medicines} & \multirow[t]{3}{*}{Yes} & Count & 899 & 1435 & 2334 \\
\hline & & \% within Insist for bills when buy medicines & 38.5\% & 61.5\% & 100.0\% \\
\hline & & \% within Location & 71.6\% & 73.8\% & 72.9\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 315 & 445 & 760 \\
\hline & & \% within Insist for bills when buy medicines & 41.4\% & 58.6\% & 100.0\% \\
\hline & & \% within Location & 25.1\% & 22.9\% & 23.8\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 41 & 65 & 106 \\
\hline & & \% within Insist for bills when buy medicines & 38.7\% & 61.3\% & 100.0\% \\
\hline & & \% within Location & 3.3\% & 3.3\% & 3.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Insist for bills when buy medicines & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{r}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(2.078(\mathrm{a})\) & 2 & .354 \\
Likelihood Ratio & 2.069 & 2 & .355 \\
Linear-by-Linear & 1.177 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 41.57 .
When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components * Location

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{12}{*}{When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy alternative company drugs having the same components} & Yes & Count & 801 & 1271 & 2072 \\
\hline & & \% within When the & & & \\
\hline & & particular brand of & & & \\
\hline & & medicine looking for & & & \\
\hline & & is not available, & & & \\
\hline & & asked by the & 38.7\% & 61.3\% & 100.0\% \\
\hline & & Pharmacies to buy & & & \\
\hline & & alternative company & & & \\
\hline & & & & & \\
\hline & & same components & & & \\
\hline & & \% within Location & 63.8\% & 65.3\% & 64.8\% \\
\hline & No & Count & 396 & 596 & 992 \\
\hline
\end{tabular}

Chi-Square Tests

\begin{tabular}{|l|l|l|l|}
Likelihood Ratio & 1.142 & 2 & .565 \\
Linear-by-Linear & 1.071 & 1 & .301 \\
Association & & & \\
N of Valid Cases & 3200
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 53.34 .

\section*{Ready to buy as advised by the Pharmacy * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{Ready to buy as advised by the Pharmacy} & \multirow[t]{3}{*}{Yes} & Count & 540 & 819 & 1359 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 39.7\% & 60.3\% & 100.0\% \\
\hline & & \% within Location & 43.0\% & 42.1\% & 42.5\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 637 & 1022 & 1659 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 38.4\% & 61.6\% & 100.0\% \\
\hline & & \% within Location & 50.8\% & 52.5\% & 51.8\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 78 & 104 & 182 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 42.9\% & 57.1\% & 100.0\% \\
\hline & & \% within Location & 6.2\% & 5.3\% & 5.7\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Ready to buy as advised by the Pharmacy & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Value }\end{array}\)} & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(1.633(a)\) & 2 & .442 \\
Likelihood Ratio & 1.624 & 2 & .444 \\
Linear-by-Linear & .001 & & 1
\end{tabular}\() .981\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecter
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 71.38 .

\section*{Bought medicines through online * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{Bought medicines through online} & \multirow[t]{3}{*}{Yes} & Count & 109 & 266 & 375 \\
\hline & & \% within Bought medicines through online & 29.1\% & 70.9\% & 100.0\% \\
\hline & & \% within Location & 8.7\% & 13.7\% & 11.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1095 & 1618 & 2713 \\
\hline & & \% within Bought medicines through online & 40.4\% & 59.6\% & 100.0\% \\
\hline & & \% within Location & 87.3\% & 83.2\% & 84.8\% \\
\hline & \multirow[t]{4}{*}{No opinion} & Count & 51 & 61 & 112 \\
\hline & & \% within Bought medicines through online & 45.5\% & 54.5\% & 100.0\% \\
\hline & & \% within Location & 4.1\% & 3.1\% & 3.5\% \\
\hline Total & & Count & 1255 & 1945 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within Bought \\
medicines through \\
online
\end{tabular} & \(39.2 \%\) & \(60.8 \%\) & \(100.0 \%\) \\
\(\%\) within Location & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(19.574(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 20.193 & 2 & .000 \\
Linear-by-Linear & 18.366 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 43.93 .

\section*{Look into the dosage level prescribed in the drugs when buy medicine * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{7}{*}{Look into the dosage level prescribed in the drugs when buy medicine} & Yes & Count & 683 & 1122 & 1805 \\
\hline & & \% within Look into the dosage level & & & \\
\hline & & prescribed in the & 37.8\% & 62.2\% & 100.0\% \\
\hline & & drugs when buy & & & \\
\hline & & medicine & & & \\
\hline & & \% within Location & 54.4\% & 57.7\% & 56.4\% \\
\hline & No & Count & 507 & 729 & 1236 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & Value & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.306(\mathrm{a})\) & 2 & .191 \\
Likelihood Ratio & 3.303 & 2 & .192 \\
Linear-by-Linear & 2.847 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 62.36 .

\section*{Aware of Schedule H - drug * Location}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{10}{*}{Aware of Schedule H - drug} & \multirow[t]{4}{*}{Yes} & Count & 145 & 217 & 362 \\
\hline & & \% within Aware of & & & \\
\hline & & Schedule H-drug & 40.1\% & 59.9\% & 100.0\% \\
\hline & & \% within Location & 11.6\% & 11.2\% & 11.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 906 & 1379 & 2285 \\
\hline & & \% within Aware of Schedule H - drug & 39.6\% & 60.4\% & 100.0\% \\
\hline & & \% within Location & 72.2\% & 70.9\% & 71.4\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 204 & 349 & 553 \\
\hline & & \% within Aware of Schedule H - drug & 36.9\% & 63.1\% & 100.0\% \\
\hline & & \% within Location & 16.3\% & 17.9\% & 17.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Aware of Schedule H - drug & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|c|c|c|c|}
\hline & Value & df & Asymp. Sig. (2-sided) \\
\hline Pearson Chi-Square & 1.543(a) & 2 & . 462 \\
\hline Likelihood Ratio & 1.552 & 2 & . 460 \\
\hline Linear-by-Linear & 1.174 & 1 & . 278 \\
\hline \begin{tabular}{l}
Association \\
N of Valid Cases
\end{tabular} & & & \\
\hline & 3200 & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 141.97 .

Got Schedule H-drug without medical prescription * Location
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Crosstab} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{10}{*}{Got Schedule H drug without medical prescription} & \multirow[t]{4}{*}{Yes} & Count & \multirow[t]{2}{*}{89} & \multirow[t]{2}{*}{79} & 168 \\
\hline & & \multirow[t]{3}{*}{\% within Got Schedule H - drug without medical prescription \% within Location} & & & \\
\hline & & & 53.0\% & 47.0\% & 100.0\% \\
\hline & & & 7.1\% & 4.1\% & 5.3\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 806 & 1251 & 2057 \\
\hline & & \multirow[t]{2}{*}{\% within Got Schedule H-drug without medical prescription \% within Location} & 39.2\% & 60.8\% & 100.0\% \\
\hline & & & 64.2\% & \multirow[t]{2}{*}{\[
\begin{array}{r}
64.3 \% \\
615
\end{array}
\]} & 64.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 360 & & 975 \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
\% within Got \\
Schedule H-drug without medical prescription \% within Location
\end{tabular}} & 36.9\% & 63.1\% & 100.0\% \\
\hline & & & 28.7\% & 31.6\% & 30.5\% \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Total}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Count \\
\% within Got Schedule H - drug without medical prescription \% within Location
\end{tabular}} & 1255 & 1945 & 3200 \\
\hline & & & 39.2\% & 60.8\% & 100.0\% \\
\hline & & & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|l|l|c|}
\hline & Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\hline Pearson Chi-Square & \(15.496(\mathrm{a})\) & 2 & .000 \\
Likelihood Ratio & 15.148 & 2 & .001 \\
Linear-by-Linear & 9.239 & 1 & .002 \\
Association & & & \\
N of Valid Cases & 3200 & &
\end{tabular}
a 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 65.89.

\section*{Affected due to over dosage of drug * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{10}{*}{Affected due to over dosage of drug} & \multirow[t]{4}{*}{Yes} & Count & 190 & 250 & 440 \\
\hline & & \% within Affected due to over & 43.2\% & 56.8\% & 100.0\% \\
\hline & & dosage of drug & & & \\
\hline & & \% within Location & 15.1\% & 12.9\% & 13.8\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 943 & 1500 & 2443 \\
\hline & & \% within Affected due to over dosage of drug & 38.6\% & 61.4\% & 100.0\% \\
\hline & & \% within Location & 75.1\% & 77.1\% & 76.3\% \\
\hline & \multirow[t]{3}{*}{No opinion} & Count & 122 & 195 & 317 \\
\hline & & \% within Affected due to over dosage of drug & 38.5\% & 61.5\% & 100.0\% \\
\hline & & \% within Location & 9.7\% & 10.0\% & 9.9\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1255 & 1945 & 3200 \\
\hline & & \% within Affected due to over dosage of drug & 39.2\% & 60.8\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(3.363(a)\) & 2 & .186 \\
Likelihood Ratio & 3.333 & 2 & .189 \\
Linear-by-Linear & 2.177 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 124.32 .

\section*{If yes, mode of get the drug * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{2}{|c|}{Location} & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & \multirow[t]{3}{*}{On prescription} & Count & 87 & 109 & 196 \\
\hline & & \(\%\) within If yes, mode of get the drug & 44.4\% & 55.6\% & 100.0\% \\
\hline & & \% within Location & 45.8\% & 43.6\% & 44.5\% \\
\hline & \multirow[t]{3}{*}{Overcounter in pharmacy} & Count & 45 & 76 & 121 \\
\hline & & \% within If yes, mode of get the drug & 37.2\% & 62.8\% & 100.0\% \\
\hline & & \% within Location & 23.7\% & 30.4\% & 27.5\% \\
\hline & \multirow[t]{3}{*}{Self medication} & Count & 58 & 65 & 123 \\
\hline & & \% within If yes, mode of get the drug & 47.2\% & 52.8\% & 100.0\% \\
\hline & & \% within Location & 30.5\% & 26.0\% & 28.0\% \\
\hline Total & & Count & 190 & 250 & 440 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|}
\begin{tabular}{l}
\% within If yes, mode \\
of get the drug \\
\% within Location
\end{tabular} & \begin{tabular}{r}
\(43.2 \%\)
\end{tabular} & \(56.8 \%\) & \(100.0 \%\) \\
\(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(2.678(a)\) & 2 & .262 \\
Likelihood Ratio & 2.697 & 2 & .260 \\
Linear-by-Linear & .084 & & 1
\end{tabular}\() .772\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expected
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 52.25 .

\section*{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Location}

Crosstab
\begin{tabular}{|l|l|r|r|r|}
\hline & & \multicolumn{2}{|c|}{ Location } & \\
\cline { 3 - 4 } & & \multicolumn{1}{|c|}{ Rural } & \multicolumn{1}{c|}{ Urban } & \multicolumn{1}{c|}{ Total } \\
\hline \begin{tabular}{l}
Aware of the \\
existing laws for \\
protecting the \\
Consumer in case \\
of counterfeit \\
medicines
\end{tabular} & \begin{tabular}{l}
Count \\
\% within Aware of \\
the existing laws for
\end{tabular} & 610 & 902 & 1512 \\
& \begin{tabular}{l}
protecting the \\
Consumer in case
\end{tabular} & \(40.3 \%\) & \(59.7 \%\) & \(100.0 \%\) \\
of counterfeit \\
medicines \\
\% within Location \\
Count & \(48.6 \%\) & \(46.4 \%\) & \(47.3 \%\) \\
& & & 555 & 838
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(10.419(\mathrm{a})\) & 2 & .005 \\
Likelihood Ratio & 10.729 & 2 & .005 \\
Linear-by-Linear & 5.691 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 115.70 .

\section*{Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Location}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Loc & & \multirow[b]{2}{*}{Total} \\
\hline & & & Rural & Urban & \\
\hline \multirow[t]{18}{*}{Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs} & \multirow[t]{6}{*}{Yes} & \multirow[t]{6}{*}{\begin{tabular}{l}
Count \\
\% within Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs \% within Location
\end{tabular}} & \multirow[t]{2}{*}{802} & \multirow[t]{2}{*}{1176} & \multirow[t]{2}{*}{1978} \\
\hline & & & & & \\
\hline & & & 40.5\% & 59.5\% & 100.0\% \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 63.9\% & 60.5\% & 61.8\% \\
\hline & \multirow[t]{6}{*}{No} & Count & \multirow[t]{2}{*}{389} & \multirow[t]{2}{*}{619} & 1008 \\
\hline & & \multirow[t]{5}{*}{\% within Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs \% within Location} & & & \\
\hline & & & 38.6\% & 61.4\% & 100.0\% \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 31.0\% & 31.8\% & 31.5\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & \multirow[t]{2}{*}{64} & 150 & 214 \\
\hline & & \multirow[t]{5}{*}{\begin{tabular}{l}
\% within Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs \\
\% within Location
\end{tabular}} & & & \\
\hline & & & 29.9\% & 70.1\% & 100.0\% \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 5.1\% & 7.7\% & 6.7\% \\
\hline \multicolumn{2}{|l|}{Total} & Count & 1255 & 1945 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\begin{tabular}{l}
\% within Aware of \\
Consumer Courts for \\
redressal of \\
grievances of the \\
consumers relating \\
to mishandling in \\
selling drugs \\
\% within Location
\end{tabular} & \(39.2 \%\) & \(100.0 \%\) & \(100.0 \%\)
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(9.413(\mathrm{a})\) & 2 & .009 \\
Likelihood Ratio & 9.689 & 2 & .008 \\
Linear-by-Linear & 7.334 & 1 & .007 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 83.93 .
If yes, filled a case in the Consumer Court * Location
Crosstab
\begin{tabular}{|l|l|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{ Location } \\
\multirow{2}{*|}{} & \\
\cline { 3 - 4 } & & \multicolumn{1}{|c|}{ Rural } & \multicolumn{1}{c|}{ Urban } & \multicolumn{1}{c|}{ Total } \\
\hline \begin{tabular}{ll}
If yes, filled a \\
case in the \\
Consumer Court
\end{tabular} & Yes & Count & 21 & 51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Total} & \multirow{8}{*}{No opinion} & \% within If yes, filled a case in the Consumer Court & 40.5\% & 59.5\% & 100.0\% \\
\hline & & \% within Location & 92.3\% & 92.5\% & 92.4\% \\
\hline & & Count & 41 & 37 & 78 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 52.6\% & 47.4\% & 100.0\% \\
\hline & & \% within Location & 5.1\% & 3.1\% & 3.9\% \\
\hline & & Count & 802 & 1176 & 1978 \\
\hline & & \(\%\) within If yes, filled a case in the Consumer Court & 40.5\% & 59.5\% & 100.0\% \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(8.544(\mathrm{a})\) & 2 & .014 \\
Likelihood Ratio & 8.607 & 2 & .014 \\
Linear-by-Linear & 8.531 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 29.19
If files case, Consumer Court able to redress grievance * Location

Crosstab

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{15}{*}{If files case, Consumer Court able to redress grievance} & Yes & Count & 13 & 38 & 51 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court & 25.5\% & 74.5\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Location & 61.9\% & 74.5\% & 70.8\% \\
\hline & No & Count & 4 & 8 & 12 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 33.3\% & 66.7\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Location & 19.0\% & 15.7\% & 16.7\% \\
\hline & No opinion & Count & 4 & 5 & 9 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 44.4\% & 55.6\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Location & 19.0\% & 9.8\% & 12.5\% \\
\hline \multirow[t]{5}{*}{Total} & & Count & 21 & 51 & 72 \\
\hline & & \% within If files case, & & & \\
\hline & & Consumer Court able to redress & 29.2\% & 70.8\% & 100.0\% \\
\hline & & grievance & & & \\
\hline & & \% within Location & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(1.451(\mathrm{a})\) & 2 & .484 \\
Likelihood Ratio & 1.381 & & 2
\end{tabular}
a 2 cells (\(33.3 \%\)) have expected count less than 5 . The minimum expected count is 2.63

\section*{Annexure-V}

\section*{Analysis of Region-wise Data}

\section*{Frequencies}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Region} \\
\hline & & Frequency & Percent & Valid Percent & Cumulative Percent \\
\hline \multirow[t]{5}{*}{Valid} & Northern & 1498 & 46.8 & 46.8 & 46.8 \\
\hline & Souther & 869 & 27.2 & 27.2 & 74.0 \\
\hline & Western & 416 & 13.0 & 13.0 & 87.0 \\
\hline & Central & 417 & 13.0 & 13.0 & 100.0 \\
\hline & Total & 3200 & 100.0 & 100.0 & \\
\hline
\end{tabular}

\section*{Crosstabs}

\section*{Age Group in years * Region}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Crosstab} \\
\hline & & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{6}{*}{Age Group in years} & \multirow[t]{3}{*}{18-40} & Count & 1128 & 654 & 254 & 263 & 2299 \\
\hline & & \% within Age Group in years & 49.1\% & 28.4\% & 11.0\% & 11.4\% & 100.0\% \\
\hline & & \% within Region & 75.3\% & 75.3\% & 61.1\% & 63.1\% & 71.8\% \\
\hline & \multirow[t]{3}{*}{41-60} & Count & 323 & 185 & 135 & 105 & 748 \\
\hline & & \% within Age Group in years & 43.2\% & 24.7\% & 18.0\% & 14.0\% & 100.0\% \\
\hline & & \% within Region & 21.6\% & 21.3\% & 32.5\% & 25.2\% & 23.4\% \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|r|r|r|r|r|}
\hline & Above 60 & Count & 47 & 30 & 27 & 49 & 153 \\
\cline { 3 - 8 } & \begin{tabular}{l}
\% within Age \\
Group in \\
years
\end{tabular} & \(30.7 \%\) & \(19.6 \%\) & \(17.6 \%\) & \(32.0 \%\) & \(100.0 \%\) \\
\hline \begin{tabular}{l}
\% within \\
Region
\end{tabular} & \(3.1 \%\) & \(3.5 \%\) & \(6.5 \%\) & \(11.8 \%\) & \(4.8 \%\) \\
\hline Total & \begin{tabular}{ll}
Count
\end{tabular} & 1498 & 869 & 416 & 417 & 3200 \\
\hline \begin{tabular}{l}
\% within Age \\
Group in \\
years
\end{tabular} & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
\begin{tabular}{l}
\% within \\
Region
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & \multicolumn{1}{|c|}{ df } & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(90.654(\mathrm{a})\) & 6 & .000 \\
\hline Likelihood Ratio & 78.553 & 6 & .000 \\
\hline Linear-by-Linear & 59.783 & 1 & .000 \\
\hline Association & 3200 & & \\
\hline N of Valid Cases & & & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 19.89 .
Gender * Region

Crosstab
\begin{tabular}{|l|l|l|r|r|r|r|r|}
\hline \multicolumn{2}{|c|}{} & & \multicolumn{4}{|c|}{ Region } & \\
\cline { 3 - 7 } \multicolumn{2}{|c|}{} & & Northern & Southern & Western & Central & Total \\
\hline Gender & Male & Count & 768 & 497 & 220 & 253 & 1738 \\
\cline { 3 - 7 } & \begin{tabular}{ll}
\% within \\
Gender
\end{tabular} & \(44.2 \%\) & \(28.6 \%\) & \(12.7 \%\) & \(14.6 \%\) & \(100.0 \%\) \\
\hline & \% within & \(51.3 \%\) & \(57.2 \%\) & \(52.9 \%\) & \(60.7 \%\) & \(54.3 \%\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|r|r|r|r|r|}
\hline & & Region & & & & \\
\cline { 3 - 8 } & Female & Count & 730 & 372 & 196 & 164 & 1462 \\
\cline { 3 - 8 } & \begin{tabular}{l}
\% within \\
Gender
\end{tabular} & \(49.9 \%\) & \(25.4 \%\) & \(13.4 \%\) & \(11.2 \%\) & \(100.0 \%\) \\
\hline & \begin{tabular}{l}
\% within \\
Region
\end{tabular} & \(48.7 \%\) & \(42.8 \%\) & \(47.1 \%\) & \(39.3 \%\) & \(45.7 \%\) \\
\hline Total & Count & 1498 & 869 & 416 & 417 & 3200 \\
\cline { 3 - 8 } & \begin{tabular}{l}
\% within \\
Gender
\end{tabular} & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
\hline & \begin{tabular}{l}
\% within \\
Region
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(15.636(\mathrm{a})\) & 3 & .001 \\
Likelihood Ratio & 15.700 & 3 & .001 \\
Linear-by-Linear & 9.716 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 190.06 .

\section*{Monthly Income * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & Northern & Southern & Western & Central & \\
\hline Monthly Income Upto 10000 & Count & 650 & 339 & 192 & 191 & 1372 \\
\hline & \% within Monthly Income & 47.4\% & 24.7\% & 14.0\% & 13.9\% & 100.0\% \\
\hline & \% within Region & 43.4\% & 39.0\% & 46.2\% & 45.8\% & 42.9\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{13}{*}{Total} & \multirow[t]{4}{*}{10001-20000} & Count & 359 & 255 & 103 & 104 & 1 \\
\hline & & \% within Monthly & & & & & \\
\hline & & \% within Monthly Income & 43.7\% & 31.1\% & 12.5\% & 12.7\% & 100.0\% \\
\hline & & \% within Region & 24.0\% & 29.3\% & 24.8\% & 24.9\% & 25.7\% \\
\hline & 20001-30000 & Count & 323 & 194 & 77 & 83 & 677 \\
\hline & & \% within Monthly & 47.7\% & 28.7\% & 11.4\% & 12.3\% & 100.0\% \\
\hline & & \% within Region & 21.6\% & 22.3\% & 18.5\% & 19.9\% & 21.2\% \\
\hline & Above 30000 & Count & 166 & 81 & 44 & 39 & 330 \\
\hline & & \% within Monthly & 50.3\% & 24.5\% & 13.3\% & 11.8\% & 100.0\% \\
\hline & & \% within Region & 11.1\% & 9.3\% & 10.6\% & 9.4\% & 10.3\% \\
\hline & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Monthly Income & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
& \multicolumn{1}{c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & 15.939 (a) & 9 & .068 \\
Likelihood Ratio & 15.900 & & 9
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 42.90 .

\section*{Amount spent family on Health and Medicines per month * Region}

Crosstab
\begin{tabular}{|l|l|l|l|l|}
\hline & & Region & Total \\
\hline
\end{tabular}

\begin{tabular}{|l|r|r|r|r|r|}
\begin{tabular}{l}
\% within Amount \\
spent family on \\
Health and \\
Medicines per \\
month \\
\% within Region
\end{tabular} & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(55.957(\mathrm{a})\) & 12 & .000 \\
Likelihood Ratio & 58.448 & 12 & .000 \\
Linear-by-Linear & 10.260 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 20.28.

\section*{Marital Status * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{6}{*}{Marital Status} & \multirow[t]{3}{*}{Married} & Count & 868 & 506 & 269 & 276 & 1919 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 45.2\% & 26.4\% & 14.0\% & 14.4\% & 100.0\% \\
\hline & & \% within Region & 57.9\% & 58.2\% & 64.7\% & 66.2\% & 60.0\% \\
\hline & \multirow[t]{3}{*}{Single} & Count & 630 & 363 & 147 & 141 & 1281 \\
\hline & & \begin{tabular}{l}
\% within \\
Marital Status
\end{tabular} & 49.2\% & 28.3\% & 11.5\% & 11.0\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Region
\end{tabular} & 42.1\% & 41.8\% & 35.3\% & 33.8\% & 40.0\% \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|r|}
Total & \begin{tabular}{ll|r|r|r|}
Count & 1498 & 869 & 416 & 417
\end{tabular} & 3200 \\
\% within & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
& \begin{tabular}{l}
Marital Status \\
\% within \\
Region
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(14.191(a)\) & 3 & .003 \\
Likelihood Ratio & 14.368 & 3 & .002 \\
Linear-by-Linear & 12.094 & & 1
\end{tabular}
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expect
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 166.53 .

\section*{Educational Qualification * Region}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SSLC & Count & 182 & 79 & 43 & 44 & 348 \\
\hline & & \% within & & & & & \\
\hline & & Educational Qualification & 52.3\% & 22.7\% & 12.4\% & 12.6\% & 100.0\% \\
\hline & & \% within Region & 12.1\% & 9.1\% & 10.3\% & 10.6\% & 10.9\% \\
\hline & Below SSLC & Count & 326 & 141 & 86 & 95 & 648 \\
\hline & & \% within & & & & & \\
\hline & & Educational Qualification & 50.3\% & 21.8\% & 13.3\% & 14.7\% & 100.0\% \\
\hline & & \% within Region & 21.8\% & 16.2\% & 20.7\% & 22.8\% & 20.3\% \\
\hline Total & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within & & & & & \\
\hline & & Educational & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & Qualification
\% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
& Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & 24.709 (a) & 9 & .003 \\
Likelihood Ratio & 25.167 & 9 & .003 \\
Linear-by-Linear & .679 & & 1
\end{tabular}
a cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 45.24 .

\section*{Location * Region}

Crosstab

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{Location} & Rural & Count & 490 & 346 & 212 & 207 & 1255 \\
\hline & & \% within Location & 39.0\% & 27.6\% & 16.9\% & 16.5\% & 100.0\% \\
\hline & & \% within & 32.7\% & 39.8\% & 51.0\% & 49.6\% & 39.2\% \\
\hline & Urban & Count & 1008 & 523 & 204 & 210 & 1945 \\
\hline & & \% within Location & 51.8\% & 26.9\% & 10.5\% & 10.8\% & 100.0\% \\
\hline & & \% within Region & 67.3\% & 60.2\% & 49.0\% & 50.4\% & 60.8\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Location & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\begin{array}{l}\text { Value }\end{array}\)} & df & \multicolumn{1}{c|}{\(\begin{array}{c}\text { Asymp. Sig. } \\
\text { (2-sided) }\end{array}\)} \\
\hline Pearson Chi-Square & \(69.813(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 69.398 & 3 & .000 \\
Linear-by-Linear & 64.047 & & 1
\end{tabular}\() .000\)
Association
N of Valid Cases
a 0 cells (.0\%) have expected count less than 5. The minimum expecte
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 163.15 .
Buy medicines * Region
Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
& Value & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(33.237(\mathrm{a})\) & 9 & .000 \\
Likelihood Ratio & 36.086 & 9 & .000 \\
Linear-by-Linear & .678 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.30 .

\section*{Family members go to Clinic normally * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline Family members go & Govt Hospital / & Count & 600 & 396 & 90 & 180 & 1266 \\
\hline to Clinic normally & Dispensary & \% within Family & & & & & \\
\hline & & members go to Clinic & 47.4\% & 31.3\% & 7.1\% & 14.2\% & 100.0\% \\
\hline & & \% within Region & 40.1\% & 45.6\% & 21.6\% & 43.2\% & 39.6\% \\
\hline & Private Clinic & Count & 898 & 473 & 326 & 237 & 1934 \\
\hline & & \% within Family members go to Clinic normally & 46.4\% & 24.5\% & 16.9\% & 12.3\% & 100.0\% \\
\hline & & \% within Region & 59.9\% & 54.4\% & 78.4\% & 56.8\% & 60.4\% \\
\hline Total & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Family members go to Clinic normally & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(71.449(\mathrm{a})\) & 3 & .000 \\
Likelihood Ratio & 76.042 & 3 & .000 \\
Linear-by-Linear & 3.159 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 164.58 .

Reason for go to a Private Doctor / Clinic * Region
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Reason for go to a Private Doctor / Clinic} & \multirow[t]{3}{*}{Better Treatment} & Count & 504 & 243 & 191 & 162 & 1100 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 45.8\% & 22.1\% & 17.4\% & \[
14.7 \%
\] & 100.0\% \\
\hline & & \% within Region & 56.1\% & 51.4\% & 58.6\% & 68.4\% & 56.9\% \\
\hline & \multirow[t]{3}{*}{Better Facilities} & Count & 222 & 153 & 79 & 50 & 504 \\
\hline & & \multirow[t]{2}{*}{\% within Reason for go to a Private Doctor / Clinic \% within Region} & 44.0\% & 30.4\% & 15.7\% & 9.9\% & 100.0\% \\
\hline & & & \multirow[t]{2}{*}{\(24.7 \%\)
172} & 32.3\% & 24.2\% & 21.1\% & 26.1\% \\
\hline & \multirow[t]{3}{*}{No Govt.Hospital nearby} & Count & & 77 & 56 & 25 & 330 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 52.1\% & 23.3\% & 17.0\% & 7.6\% & 100.0\% \\
\hline & & \% within Region & 19.2\% & 16.3\% & 17.2\% & 10.5\% & 17.1\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 898 & 473 & 326 & 237 & 1934 \\
\hline & & \% within Reason for go to a Private Doctor / Clinic & 46.4\% & 24.5\% & 16.9\% & 12.3\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(27.081(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 27.343 & 6 & .000 \\
Linear-by-Linear & 10.687 & 1 & .001 \\
Association & & & \\
\hline
\end{tabular}
\(\left|\begin{array}{l|l}N \text { of Valid Cases } \\ a & 1934\end{array}\right|\)

\section*{Heard of Generic Drugs * Region}

Crosstab

\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
\% within \\
Region
\end{tabular} & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(18.240(\mathrm{a})\) & 6 & .006 \\
Likelihood Ratio & 19.301 & 6 & .004 \\
Linear-by-Linear & .214 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 50.70 .
Chronic problems for which family members take medicines regularly * Region
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{7}{*}{Chronic problems for which family members take medicines regularly} & BP/Hypertension & Count & 166 & 80 & 58 & 49 & 353 \\
\hline & & \% within Chronic & & & & & \\
\hline & & problems for which family members take medicines regularly & 47.0\% & 22.7\% & 16.4\% & 13.9\% & 100.0\% \\
\hline & & \% within Region & 11.1\% & 9.2\% & 13.9\% & 11.8\% & 11.0\% \\
\hline & Heart Problems & Count & 51 & 17 & 12 & 22 & 102 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 50.0\% & 16.7\% & 11.8\% & 21.6\% & 100.0\% \\
\hline & & \% within Region & 3.4\% & 2.0\% & 2.9\% & 5.3\% & 3.2\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Diabetes & Count & 145 & 103 & 39 & 58 & 345 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 42.0\% & 29.9\% & 11.3\% & 16.8\% & 100.0\% \\
\hline & & \% within Region & 9.7\% & 11.9\% & 9.4\% & 13.9\% & 10.8\% \\
\hline & Stomach Ailments & Count & 137 & 85 & 17 & 37 & 276 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 49.6\% & 30.8\% & 6.2\% & 13.4\% & 100.0\% \\
\hline & & \% within Region & 9.1\% & 9.8\% & 4.1\% & 8.9\% & 8.6\% \\
\hline & Arthritis & Count & 9 & 12 & 6 & 7 & 34 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 26.5\% & 35.3\% & 17.6\% & 20.6\% & 100.0\% \\
\hline & & \% within Region & .6\% & 1.4\% & 1.4\% & 1.7\% & 1.1\% \\
\hline & Others & Count & 990 & 572 & 284 & 244 & 2090 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 47.4\% & 27.4\% & 13.6\% & 11.7\% & 100.0\% \\
\hline & & \% within Region & 66.1\% & 65.8\% & 68.3\% & 58.5\% & 65.3\% \\
\hline Total & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Chronic problems for which family members take medicines regularly & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & \multicolumn{1}{|c|}{ df } & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(44.709(\mathrm{a})\) & 15 & .000 \\
Likelihood Ratio & 46.748 & 15 & .000 \\
Linear-by-Linear & 3.994 & 1 & .046 \\
Association & 3200 & & \\
N of Valid Cases & & & \\
\hline
\end{tabular}
a 2 cells \((8.3 \%)\) have expected count less than 5 . The minimum expected count is 4.42 .

\section*{Examine the expiry date when buy medicines * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Examine the expiry date when buy medicines} & Yes & Count & 1210 & 691 & 338 & 330 & 2569 \\
\hline & & \% within Examine the expiry date when buy medicines & 47.1\% & 26.9\% & 13.2\% & 12.8\% & 100.0\% \\
\hline & & \% within Region & 80.8\% & 79.5\% & 81.3\% & 79.1\% & 80.3\% \\
\hline & No & Count & 244 & 158 & 69 & 79 & 550 \\
\hline & & \% within Examine the expiry date when buy medicines & 44.4\% & 28.7\% & 12.5\% & 14.4\% & 100.0\% \\
\hline & & \% within Region & 16.3\% & 18.2\% & 16.6\% & 18.9\% & 17.2\% \\
\hline & No opinion & Count & 44 & 20 & 9 & 8 & 81 \\
\hline & & \% within Examine the expiry date when buy medicines & 54.3\% & 24.7\% & 11.1\% & 9.9\% & 100.0\% \\
\hline & & \% within Region & 2.9\% & 2.3\% & 2.2\% & 1.9\% & 2.5\% \\
\hline Total & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|}
\begin{tabular}{l}
\% within Examine \\
the expiry date when \\
buy medicines
\end{tabular} & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
\% within Region & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & & & \multicolumn{1}{c|}{\begin{tabular}{l}
Value \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(4.264(a)\) & 6 & .641 \\
Likelihood Ratio & 4.270 & 6 & .640 \\
Linear-by-Linear & .000 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 10.53 .

\section*{Victim of expired drugs * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & \multirow[b]{2}{*}{19} & Central & \\
\hline \multirow[t]{8}{*}{Victim of expired drugs} & \multirow[t]{5}{*}{Yes} & Count & \multirow[t]{2}{*}{\[
\begin{array}{r}
89 \\
39.6 \%
\end{array}
\]} & 77 & & 40 & 225 \\
\hline & & \% within & & & & & \\
\hline & & Victim of expired drugs & & 34.2\% & 8.4\% & 17.8\% & 100.0\% \\
\hline & & \% within & 5.9\% & 8.9\% & 4.6\% & 9.6\% & 7.0\% \\
\hline & & Region
Count & & & & & \\
\hline & & \% within & & & & & \\
\hline & & Victim of expired drugs & 46.4\% & 26.4\% & 13.7\% & 13.6\% & 100.0\% \\
\hline & & \% within & 85.1\% & 83.4\% & 90.6\% & 89.4\% & 85.9\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{Total} & \multirow[t]{6}{*}{No opinion} & Region Count & 134 & 67 & 20 & 4 & 225 \\
\hline & & \begin{tabular}{l}
\% within \\
Victim of expired drugs
\end{tabular} & 59.6\% & 29.8\% & 8.9\% & 1.8\% & 100.0\% \\
\hline & & \begin{tabular}{l}
\% within \\
Region
\end{tabular} & 8.9\% & 7.7\% & 4.8\% & 1.0\% & 7.0\% \\
\hline & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \begin{tabular}{l}
\% within \\
Victim of expired drugs
\end{tabular} & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(49.732(a)\) & & 6 \\
Likelihood Ratio & 62.212 & & 6 \\
\hline Linear-by-Linear & 26.849 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 29.25.

\section*{Check the MRP (Maximum Retail Price) before buying drugs * Region}

Crosstab
\begin{tabular}{|l|l|r|r|r|r|c|}
\hline & & \multicolumn{4}{|c|}{ Region } & \\
\cline { 4 - 7 } & & & \multicolumn{4}{c|}{} \\
\hline & Check the MRP & Count & 1055 & 639 & 259 & 289 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (Maximum Retail Price) before buying drugs & \% within Check the MRP (Maximum Retail Price) before buying drugs \% within Region & \(47.1 \%\)
\(70.4 \%\) & \(28.5 \%\)
\(73.5 \%\) & \(11.6 \%\)
\(62.3 \%\) & \(12.9 \%\)
\(69.3 \%\) & \(100.0 \%\)
\(70.1 \%\) \\
\hline No & Count & 381 & 194 & 138 & 115 & 828 \\
\hline & \% within Check the MRP (Maximum Retail Price) before buying drugs \% within Region & \(46.0 \%\)
\(25.4 \%\) & \(23.4 \%\)
\(22.3 \%\) & \(16.7 \%\)
\(33.2 \%\) & \(13.9 \%\)
27.6\% & \(100.0 \%\)
\(25.9 \%\) \\
\hline No opinion & Count & 62 & 36 & 19 & 13 & 130 \\
\hline & \% within Check the MRP (Maximum Retail Price) before buying drugs \% within Region & \(47.7 \%\)
\(4.1 \%\) & \(27.7 \%\)
\(4.1 \%\) & \(14.6 \%\)
\(4.6 \%\) & \(10.0 \%\)
\(3.1 \%\) & \(100.0 \%\)
\(4.1 \%\) \\
\hline Total & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & \% within Check the MRP (Maximum Retail Price) before buying drugs & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(19.761(\mathrm{a})\) & 6 & .003 \\
Likelihood Ratio & 19.441 & 6 & .003 \\
Linear-by-Linear & 1.279 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 16.90 .

\section*{Charged the MRP of buying drugs * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Charged the MRP of buying drugs} & \multirow[t]{3}{*}{Above MRP} & Count & 125 & 89 & 21 & 38 & 273 \\
\hline & & \% within Charged the MRP of buying drugs & 45.8\% & 32.6\% & 7.7\% & 13.9\% & 100.0\% \\
\hline & & \% within Region & 8.3\% & 10.2\% & 5.0\% & 9.1\% & 8.5\% \\
\hline & \multirow[t]{3}{*}{Below MRP} & Count & 259 & 207 & 90 & 75 & 631 \\
\hline & & \% within Charged the MRP of buying drugs & 41.0\% & 32.8\% & 14.3\% & 11.9\% & 100.0\% \\
\hline & & \% within Region & 17.3\% & 23.8\% & 21.6\% & 18.0\% & 19.7\% \\
\hline & \multirow[t]{3}{*}{At MRP} & Count & 1114 & 573 & 305 & 304 & 2296 \\
\hline & & \% within Charged the MRP of buying drugs & 48.5\% & 25.0\% & 13.3\% & 13.2\% & 100.0\% \\
\hline & & \% within Region & 74.4\% & 65.9\% & 73.3\% & 72.9\% & 71.8\% \\
\hline \multirow[t]{3}{*}{Total} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Count \\
\% within Charged the MRP of buying drugs \% within Region
\end{tabular}}} & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{|c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(28.168(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 28.831 & 6 & .000 \\
Linear-by-Linear & .183 & & 1
\end{tabular}

a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 35.49 .

\section*{Practice Self-medication * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{10}{*}{Practice Selfmedication} & \multirow[t]{4}{*}{Yes} & Count & 542 & 309 & 147 & 175 & 1173 \\
\hline & & \% within & & & & & \\
\hline & & Practice Selfmedication & 46.2\% & 26.3\% & 12.5\% & 14.9\% & 100.0\% \\
\hline & & \% within Region & 36.2\% & 35.6\% & 35.3\% & 42.0\% & 36.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 851 & 463 & 256 & 232 & 1802 \\
\hline & & \% within Practice Selfmedication & 47.2\% & 25.7\% & 14.2\% & 12.9\% & 100.0\% \\
\hline & & \% within Region & 56.8\% & 53.3\% & 61.5\% & 55.6\% & 56.3\% \\
\hline & \multirow[t]{7}{*}{No opinion} & Count & 105 & 97 & 13 & 10 & 225 \\
\hline & & \% within Practice Selfmedication & 46.7\% & 43.1\% & 5.8\% & 4.4\% & 100.0\% \\
\hline & & \% within Region & 7.0\% & 11.2\% & 3.1\% & 2.4\% & 7.0\% \\
\hline \multirow[t]{4}{*}{Total} & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within & & & & & \\
\hline & & Practice Selfmedication & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(50.171(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 53.556 & 6 & .000 \\
Linear-by-Linear & 8.113 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 29.25 .

\section*{Come across counterfeit medicines * Region}

Crosstab

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(71.185(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 78.086 & 6 & .000 \\
Linear-by-Linear & 17.804 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 21.19 .

\section*{If victim of expired drugs, complain to officials * Region}

\section*{Crosstab}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Total} & \% within If victim of expired drugs, complain to officials & 28.8\% & 43.8\% & 11.3\% & 16.3\% & 100.0\% \\
\hline & \% within Region & 25.8\% & 45.5\% & 47.4\% & 32.5\% & 35.6\% \\
\hline & Count & 89 & 77 & 19 & 40 & 225 \\
\hline & \(\%\) within If victim of expired drugs, complain to officials & 39.6\% & 34.2\% & 8.4\% & 17.8\% & 100.0\% \\
\hline & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(22.496(a)\) & 6 & .001 \\
Likelihood Ratio & 24.016 & & 6
\end{tabular}
a 0 cells \((.0 \%\)) have expected count less than 5 . The minimum expected count is 5.57 .

\section*{Satisfaction level of complaints * Region}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{4}{*}{Satisfaction level of Satisfactory complaints} & Count & 17 & 4 & 1 & 7 & 29 \\
\hline & \% within & & & & & \\
\hline & Satisfaction level of complaints & 58.6\% & 13.8\% & 3.4\% & 24.1\% & 100.0\% \\
\hline & \% within Region & 19.1\% & 5.2\% & 5.3\% & 17.5\% & 12.9\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Not Satisfactory & Count & 41 & 35 & 6 & 19 & 101 \\
\hline & & \% within & & & & & \\
\hline & & Satisfaction level of complaints & 40.6\% & 34.7\% & 5.9\% & 18.8\% & 100.0\% \\
\hline & & \% within Region & 46.1\% & 45.5\% & 31.6\% & 47.5\% & 44.9\% \\
\hline & No Response & Count & 31 & 38 & 12 & 14 & 95 \\
\hline & & \% within & & & & & \\
\hline & & Satisfaction level of complaints & 32.6\% & 40.0\% & 12.6\% & 14.7\% & 100.0\% \\
\hline & & \% within Region & 34.8\% & 49.4\% & 63.2\% & 35.0\% & 42.2\% \\
\hline Total & & Count & 89 & 77 & 19 & 40 & 225 \\
\hline & & \% within & & & & & \\
\hline & & Satisfaction level of complaints & 39.6\% & 34.2\% & 8.4\% & 17.8\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(13.107(\mathrm{a})\) & 6 & .041 \\
Likelihood Ratio & 13.863 & 6 & .031 \\
Linear-by-Linear & .521 & & 1
\end{tabular}
a 1 cells (\(8.3 \%\)) have expected count less than 5 . The minimum expected count is 2.45 .

\section*{Insist for bills when buy medicines * Region}

\section*{Crosstab}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{Insist for bills when buy medicines} & Yes & Count & 1104 & 612 & 290 & 328 & 2334 \\
\hline & & \% within Insist for bills when buy medicines & 47.3\% & 26.2\% & 12.4\% & 14.1\% & 100.0\% \\
\hline & & \% within Region & 73.7\% & 70.4\% & 69.7\% & 78.7\% & 72.9\% \\
\hline & No & Count & 348 & 231 & 105 & 76 & 760 \\
\hline & & \% within Insist for bills when buy medicines & 45.8\% & 30.4\% & 13.8\% & 10.0\% & 100.0\% \\
\hline & & \% within Region & 23.2\% & 26.6\% & 25.2\% & 18.2\% & 23.8\% \\
\hline & No opinion & Count & 46 & 26 & 21 & 13 & 106 \\
\hline & & \% within Insist for bills when buy medicines & 43.4\% & 24.5\% & 19.8\% & 12.3\% & 100.0\% \\
\hline & & \% within Region & 3.1\% & 3.0\% & 5.0\% & 3.1\% & 3.3\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Insist for bills when buy medicines & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \\
\hline Asymp. Sig. \\
(2-sided)
\end{tabular}\(|\)\begin{tabular}{lrr|}
\hline Pearson Chi-Square & \(16.552(\mathrm{a})\) & 6 \\
Likelihood Ratio & 16.366 & \\
Linear-by-Linear & .189 & \\
Association & 3200 & \\
N of Valid Cases & & .012 \\
& & \\
\hline
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 13.78.

When the particular brand of medicine looking for is not available, asked by the Pharmacies to buy
alternative company drugs having the same components * Region

Crosstab

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(24.657(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 26.128 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 17.68

\section*{Ready to buy as advised by the Pharmacy * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline Ready to buy as & Yes & Count & 677 & 335 & 197 & 150 & 1359 \\
\hline advised by the Pharmacy & & \% within Ready to buy as advised by & 49.8\% & 24.7\% & 14.5\% & 11.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(31.048(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 31.895 & 6 & .000 \\
Linear-by-Linear & 2.173 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 23.66.

\section*{Bought medicines through online * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Bought medicines through online} & \multirow[t]{3}{*}{Yes} & Count & 186 & 99 & 21 & 69 & 375 \\
\hline & & \% within Bought medicines through online & 49.6\% & 26.4\% & 5.6\% & 18.4\% & 100.0\% \\
\hline & & \% within Region & 12.4\% & 11.4\% & 5.0\% & 16.5\% & 11.7\% \\
\hline & \multirow[t]{3}{*}{No} & Count & 1253 & 729 & 386 & 345 & 2713 \\
\hline & & \% within Bought medicines through online & 46.2\% & 26.9\% & 14.2\% & 12.7\% & 100.0\% \\
\hline & & \% within Region & 83.6\% & 83.9\% & 92.8\% & 82.7\% & 84.8\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 59 & 41 & 9 & 3 & 112 \\
\hline & & \% within Bought medicines through online & 52.7\% & 36.6\% & 8.0\% & 2.7\% & 100.0\% \\
\hline & & \% within Region & 3.9\% & 4.7\% & 2.2\% & .7\% & 3.5\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Bought medicines through online & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(44.296(a)\) & 6 & .000 \\
Likelihood Ratio & 52.001 & & 6 \\
Linear-by-Linear & 2.696 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 14.56 .

Look into the dosage level prescribed in the drugs when buy medicine * Region
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Crosstab} \\
\hline \multirow[t]{2}{*}{} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{10}{*}{Look into the dosage level prescribed in the drugs when buy medicine} & Count & 851 & 504 & 198 & 252 & 1805 \\
\hline & \% within Look into the dosage level & & & & & \\
\hline & prescribed in the drugs when buy medicine & 47.1\% & 27.9\% & 11.0\% & 14.0\% & 100.0\% \\
\hline & \% within Region & 56.8\% & 58.0\% & 47.6\% & 60.4\% & 56.4\% \\
\hline & Count & 553 & 327 & 202 & 154 & 1236 \\
\hline & \% within Look into the dosage level prescribed in the drugs when buy medicine & 44.7\% & 26.5\% & 16.3\% & 12.5\% & 100.0\% \\
\hline & \% within Region & 36.9\% & 37.6\% & 48.6\% & 36.9\% & 38.6\% \\
\hline & Count & 94 & 38 & 16 & 11 & 159 \\
\hline & \% within Look into the dosage level prescribed in the drugs when buy medicine & 59.1\% & 23.9\% & 10.1\% & 6.9\% & 100.0\% \\
\hline & \% within Region & 6.3\% & 4.4\% & 3.8\% & 2.6\% & 5.0\% \\
\hline \multirow[t]{3}{*}{Total} & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & \% within Look into the dosage level prescribed in the drugs when buy medicine & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\(\left.\)\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \\
\hline
\end{tabular} \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \right\rvert\,
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 20.67.

\section*{Aware of Schedule H-drug * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Aware of
Schedule H-drug} & \multirow[t]{3}{*}{Yes} & Count & 192 & 80 & 44 & 46 & 362 \\
\hline & & \% within Aware of Schedule H-drug & 53.0\% & 22.1\% & 12.2\% & 12.7\% & 100.0\% \\
\hline & & \% within Region & 12.8\% & 9.2\% & 10.6\% & 11.0\% & 11.3\% \\
\hline & No & Count & 1105 & 537 & 299 & 344 & 2285 \\
\hline & & \% within Aware of Schedule H-drug & 48.4\% & 23.5\% & 13.1\% & 15.1\% & 100.0\% \\
\hline & & \% within Region & 73.8\% & 61.8\% & 71.9\% & 82.5\% & 71.4\% \\
\hline & No opinion & Count & 201 & 252 & 73 & 27 & 553 \\
\hline & & \% within Aware of Schedule H-drug & 36.3\% & 45.6\% & 13.2\% & 4.9\% & 100.0\% \\
\hline & & \% within Region & 13.4\% & 29.0\% & 17.5\% & 6.5\% & 17.3\% \\
\hline \multicolumn{2}{|l|}{Total} & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|}
\% within Aware of & \(46.8 \%\) & \(27.2 \%\) & \(13.0 \%\) & \(13.0 \%\) & \(100.0 \%\) \\
Schedule H - drug & \(40 \%\) & 100 & & \\
\% within Region & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) & \(100.0 \%\) \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(136.413(a)\) & 6 & .000 \\
Likelihood Ratio & 134.926 & 6 & .000 \\
Linear-by-Linear & .010 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 47.06 .

\section*{Got Schedule H - drug without medical prescription * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{Got Schedule H drug without medical prescription} & Yes & Count & 77 & 61 & 7 & 23 & 168 \\
\hline & & \% within Got & & & & & \\
\hline & & Schedule H-drug without medical & 45.8\% & 36.3\% & 4.2\% & 13.7\% & 100.0\% \\
\hline & & prescription & & & & & \\
\hline & & \% within Region & 5.1\% & 7.0\% & 1.7\% & 5.5\% & 5.3\% \\
\hline & No & Count & 1012 & 418 & 300 & 327 & 2057 \\
\hline & & \% within Got & & & & & \\
\hline & & Schedule H-drug without medical prescription & 49.2\% & 20.3\% & 14.6\% & 15.9\% & 100.0\% \\
\hline & & \% within Region & 67.6\% & 48.1\% & 72.1\% & 78.4\% & 64.3\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{Total} & \multirow[t]{7}{*}{No opinion} & \multirow[t]{4}{*}{\begin{tabular}{l}
Count \\
\% within Got Schedule H - drug without medical prescription \% within Region
\end{tabular}} & \multirow[t]{2}{*}{409} & \multirow[t]{2}{*}{390} & \multirow[t]{2}{*}{109} & \multirow[t]{2}{*}{67} & \multirow[t]{2}{*}{975} \\
\hline & & & & & & & \\
\hline & & & 41.9\% & 40.0\% & 11.2\% & 6.9\% & 100.0\% \\
\hline & & & 27.3\% & 44.9\% & 26.2\% & 16.1\% & 30.5\% \\
\hline & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Got Schedule H - drug without medical prescription & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(165.209(\mathrm{a})\) & & 6 \\
Likelihood Ratio & 169.405 & & 6 \\
\hline Linear-by-Linear & 6.034 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 21.84 .

\section*{Affected due to over dosage of drug * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline Affected due to & Yes & Count & 227 & 148 & 31 & 34 & 440 \\
\hline over dosage of drug & & \% within Affected due to over & 51.6\% & 33.6\% & 7.0\% & 7.7\% & 100.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & dosage of drug & & & & & \\
\hline & & \% within Region & 15.2\% & 17.0\% & 7.5\% & 8.2\% & 13.8\% \\
\hline & No & Count & 1099 & 615 & 364 & 365 & 2443 \\
\hline & & \% within Affected due to over dosage of drug & 45.0\% & 25.2\% & 14.9\% & 14.9\% & 100.0\% \\
\hline & & \% within Region & 73.4\% & 70.8\% & 87.5\% & 87.5\% & 76.3\% \\
\hline & No opinion & Count & 172 & 106 & 21 & 18 & 317 \\
\hline & & \% within Affected due to over dosage of drug & 54.3\% & 33.4\% & 6.6\% & 5.7\% & 100.0\% \\
\hline & & \% within Region & 11.5\% & 12.2\% & 5.0\% & 4.3\% & 9.9\% \\
\hline Total & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Affected due to over dosage of drug & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(80.768(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 89.017 & 6 & .000 \\
Linear-by-Linear & .014 & & 1
\end{tabular}
a 0 cells (. \(0 \%\)) have expected count less than 5 . The minimum expected count is 41.21 .

\section*{If yes, mode of get the drug * Region}

\section*{Crosstab}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{If yes, mode of get the drug} & \multirow[t]{3}{*}{On prescription} & Count & 92 & 70 & 17 & 17 & 196 \\
\hline & & \% within If yes, mode of get the drug & 46.9\% & 35.7\% & 8.7\% & 8.7\% & 100.0\% \\
\hline & & \% within Region & 40.5\% & 47.3\% & 54.8\% & 50.0\% & 44.5\% \\
\hline & \multirow[t]{3}{*}{Overcounter in pharmacy} & Count & 69 & 36 & 8 & 8 & 121 \\
\hline & & \% within If yes, mode of get the drug & 57.0\% & 29.8\% & 6.6\% & 6.6\% & 100.0\% \\
\hline & & \% within Region & 30.4\% & 24.3\% & 25.8\% & 23.5\% & 27.5\% \\
\hline & \multirow[t]{6}{*}{Self medication} & Count & 66 & 42 & 6 & 9 & 123 \\
\hline & & \% within If yes, mode of get the drug & 53.7\% & 34.1\% & 4.9\% & 7.3\% & 100.0\% \\
\hline & & \% within Region & 29.1\% & 28.4\% & 19.4\% & 26.5\% & 28.0\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 227 & 148 & 31 & 34 & 440 \\
\hline & & \% within If yes, mode of get the drug & 51.6\% & 33.6\% & 7.0\% & 7.7\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(4.459(a)\) & 6 & .615 \\
Likelihood Ratio & 4.529 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 8.53 .

Aware of the existing laws for protecting the Consumer in case of counterfeit medicines * Region
Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{17}{*}{Aware of the existing laws for protecting the Consumer in case of counterfeit medicines} & \multirow[t]{6}{*}{Yes} & \multirow[t]{6}{*}{\begin{tabular}{l}
Count \\
\% within Aware of the existing laws for protecting the Consumer in case of counterfeit medicines \% within Region
\end{tabular}} & 678 & 485 & 166 & 183 & 1512 \\
\hline & & & & & & & \\
\hline & & & 44.8\% & 32.1\% & 11.0\% & 12.1\% & 100.0\% \\
\hline & & & 44.8\% & 32.1\% & 11.0\% & 12.1\% & 100.0\% \\
\hline & & & & & & & \\
\hline & & & 45.3\% & 55.8\% & 39.9\% & 43.9\% & 47.3\% \\
\hline & \multirow[t]{5}{*}{No} & Count & 638 & 320 & 222 & 213 & 1393 \\
\hline & & \% within Aware of the existing laws for & & & & & \\
\hline & & protecting the Consumer in case & 45.8\% & 23.0\% & 15.9\% & 15.3\% & 100.0\% \\
\hline & & of counterfeit medicines & & & & & \\
\hline & & \% within Region & 42.6\% & 36.8\% & 53.4\% & 51.1\% & 43.5\% \\
\hline & \multirow[t]{6}{*}{No opinion} & Count & 182 & 64 & 28 & 21 & 295 \\
\hline & & \% within Aware of the existing laws for & & & & & \\
\hline & & protecting the & 61.7\% & 21.7\% & 9.5\% & 7.1\% & 100.0\% \\
\hline & & Consumer in case of counterfeit & 61.7\% & 21.7\% & 9.5\% & 7.1\% & 100.0\% \\
\hline & & medicines & & & & & \\
\hline & & \% within Region & 12.1\% & 7.4\% & 6.7\% & 5.0\% & 9.2\% \\
\hline \multirow[t]{5}{*}{Total} & & Count & 1498 & 869 & 416 & 417 & 3200 \\
\hline & & \% within Aware of the existing laws for & & & & & \\
\hline & & protecting the & 46.8\% & 27.2\% & 13.0\% & 13.0\% & 100.0\% \\
\hline & & Consumer in case & & & & & \\
\hline & & of counterfeit & & & & & \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(72.376(a)\) & 6 & .000 \\
Likelihood Ratio & 72.352 & & 6 \\
Linear-by-Linear & 2.430 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 38.35 .

\section*{Aware of Consumer Courts for redressal of grievances of the consumers relating to mishandling in selling drugs * Region}

Crosstab

\section*{Chi-Square Tests}
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{\begin{tabular}{l}
Value
\end{tabular}} & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(73.952(\mathrm{a})\) & 6 & .000 \\
Likelihood Ratio & 82.850 & & 6
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 27.82 .

\section*{If yes, filled a case in the Consumer Court * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{9}{*}{If yes, filled a case in the Consumer Court} & Yes & Count & 18 & 28 & 7 & 19 & 72 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 25.0\% & 38.9\% & 9.7\% & 26.4\% & 100.0\% \\
\hline & & \% within Region & 2.2\% & 5.0\% & 2.4\% & 6.7\% & 3.6\% \\
\hline & No & Count & 794 & 495 & 278 & 261 & 1828 \\
\hline & & \% within If yes, filled a case in the Consumer Court & 43.4\% & 27.1\% & 15.2\% & 14.3\% & 100.0\% \\
\hline & & \% within Region & 95.1\% & 87.6\% & 94.6\% & 91.9\% & 92.4\% \\
\hline & No opinion & Count & 23 & 42 & 9 & 4 & 78 \\
\hline & & \(\%\) within If yes, filled a case in the Consumer Court & 29.5\% & 53.8\% & 11.5\% & 5.1\% & 100.0\% \\
\hline & & \% within Region & 2.8\% & 7.4\% & 3.1\% & 1.4\% & 3.9\% \\
\hline \multirow[t]{3}{*}{Total} & & Count & 835 & 565 & 294 & 284 & 1978 \\
\hline & & \(\%\) within If yes, filled a case in the Consumer Court & 42.2\% & 28.6\% & 14.9\% & 14.4\% & 100.0\% \\
\hline & & \% within Region & 100.0\% & 100.0\% & 100.0\% & 100.0\% & 100.0\% \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \multicolumn{1}{c|}{\begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular}} \\
\hline Pearson Chi-Square & \(44.147(a)\) & 6 & .000 \\
Likelihood Ratio & 41.789 & 6 & .000 \\
Linear-by-Linear & 6.370 & & 1
\end{tabular}
a 0 cells \((.0 \%)\) have expected count less than 5 . The minimum expected count is 10.34.

\section*{If files case, Consumer Court able to redress grievance * Region}

Crosstab
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Region} & \multirow[b]{2}{*}{Total} \\
\hline & & & Northern & Southern & Western & Central & \\
\hline \multirow[t]{10}{*}{If files case, Consumer Court able to redress grievance} & \multirow[t]{4}{*}{Yes} & Count & \multirow[t]{2}{*}{12} & 21 & \multirow[t]{2}{*}{1} & 17 & \multirow[t]{2}{*}{51} \\
\hline & & \% within If files case, & & & & & \\
\hline & & Consumer Court able to redress grievance & 23.5\% & 41.2\% & 2.0\% & 33.3\% & 100.0\% \\
\hline & & \% within Region & 66.7\% & 75.0\% & 14.3\% & 89.5\% & 70.8\% \\
\hline & No & Count & 2 & 5 & 3 & 2 & 12 \\
\hline & & \% within If files case, Consumer Court able to redress grievance & 16.7\% & 41.7\% & 25.0\% & 16.7\% & 100.0\% \\
\hline & & \% within Region & 11.1\% & 17.9\% & 42.9\% & 10.5\% & 16.7\% \\
\hline & No opinion & Count & 4 & 2 & 3 & 0 & 9 \\
\hline & & \(\%\) within If files case, Consumer Court able to redress grievance & 44.4\% & 22.2\% & 33.3\% & .0\% & 100.0\% \\
\hline & & \% within Region & 22.2\% & 7.1\% & 42.9\% & .0\% & 12.5\% \\
\hline Total & & Count & 18 & 28 & 7 & 19 & 72 \\
\hline
\end{tabular}

Chi-Square Tests
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{1}{|c|}{ Value } & df & \begin{tabular}{c}
Asymp. Sig. \\
(2-sided)
\end{tabular} \\
\hline Pearson Chi-Square & \(17.412(\mathrm{a})\) & 6 & .008 \\
Likelihood Ratio & 18.340 & 6 & .005 \\
Linear-by-Linear & 1.498 & & 1
\end{tabular}
a 9 cells \((75.0 \%)\) have expected count less than 5 . The minimum expected count is .88 .```

